
deepTools Documentation
Release 2.4.1

Fidel Ramírez, Friederike Dündar, Björn Grüning, Thomas Manke

December 05, 2016

Contents

1 Contents: 3

Python Module Index 101

i

ii

deepTools Documentation, Release 2.4.1

deepTools is a suite of python tools particularly developed for the efficient analysis of high-throughput sequencing
data, such as ChIP-seq, RNA-seq or MNase-seq.

There are 3 ways for using deepTools:

• Galaxy usage – our public deepTools Galaxy server let’s you use the deepTools within the familiar Galaxy
framework without the need to master the command line

• command line usage – simply download and install the tools (see Installation and The tools)

• API – make use of your favorite deepTools modules in your own python programs (see deepTools API)

The flow chart below depicts the different tool modules that are currently available.

If the file names in the figure mean nothing to you, please make sure to check our Glossary of NGS terms.

Contents 1

http://deeptools.ie-freiburg.mpg.de

deepTools Documentation, Release 2.4.1

2 Contents

CHAPTER 1

Contents:

1.1 Installation

Remember – deepTools are available for command line usage as well as for integration into Galaxy servers!

• Requirements
• Command line installation using pip
• Command line installation without pip
• Galaxy installation

– Installation via Galaxy API (recommended)
– Installation via web browser
– Installation with Docker

1.1.1 Requirements

• Python 2.7 or Python 3.x

• numpy >= 1.8.0

• scipy >= 0.17.0

• py2bit >= 0.1.0

• pyBigWig >= 0.2.1

• pysam >= 0.8

• matplotlib >= 1.4.0

The fastest way to obtain Python 2.7 or Python 3.x together with numpy and scipy is via the Anaconda Scientific
Python Distribution. Just download the version that’s suitable for your operating system and follow the directions for
its installation. All of the requirements for deepTools can be installed in Anaconda with:

$ conda install -c bioconda deeptools

1.1.2 Command line installation using pip

Install deepTools using the following command:

3

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/

deepTools Documentation, Release 2.4.1

$ pip install deeptools

All python requirements should be automatically installed.

If you need to specify a specific path for the installation of the tools, make use of pip install‘s numerous options:

$ pip install --install-option="--prefix=/MyPath/Tools/deepTools2.0" git+https://github.com/fidelram/deepTools.git

1.1.3 Command line installation without pip

You are highly recommended to use pip rather than these more complicated steps.

1. Install the requirements listed above in the “requirements” section. This is done automatically by pip.

2. Download source code

$ git clone https://github.com/fidelram/deepTools.git

or if you want a particular release, choose one from https://github.com/fidelram/deepTools/releases:

$ wget https://github.com/fidelram/deepTools/archive/1.5.12.tar.gz
$ tar -xzvf

3. The config file will tell you what deepTools expects to be installed properly:

$ cat deepTools/deeptools/config/deeptools.cfg

[external_tools]
sort: sort

[general]
if set to max/2 (no quotes around)
half the available processors will
be used
default_proc_number: max/2
test_root: ../deeptools/test/

temporary dir:
deepTools bamCoverage, bamCompare and correctGCbias
write files to a temporary dir before merging them
and creating a final file. This can be speed up
by writting to /dev/shm but for this a large
physical memory of the server is required. If
this is the case in your system, uncomment
the following line. Otherwise, setting the
variable to 'default', deepTools will use the
temporary file configured in the system.
Any other path that wants to be used for temporary
files can by given as well (ie, /tmp)
#tmp_dir: /dev/shm
tmp_dir: default

4. install the source code (if you don’t have root permission, you can set a specific folder using the --prefix option)

$ python setup.py install --prefix /User/Tools/deepTools2.0

4 Chapter 1. Contents:

https://github.com/fidelram/deepTools/releases

deepTools Documentation, Release 2.4.1

1.1.4 Galaxy installation

deepTools can be easily integrated into a local Galaxy. All wrappers and dependencies are available in the Galaxy
Tool Shed.

Installation via Galaxy API (recommended)

First generate an API Key for your admin user and run the the installation script:

$ python ./scripts/api/install_tool_shed_repositories.py \
--api YOUR_API_KEY -l http://localhost/ \
--url http://toolshed.g2.bx.psu.edu/ \
-o bgruening -r <revision> --name suite_deeptools \
--tool-deps --repository-deps --panel-section-name deepTools

The -r argument specifies the version of deepTools. You can get the latest revision number from the test tool shed or
with the following command:

$ hg identify http://toolshed.g2.bx.psu.edu/repos/bgruening/suite_deeptools

You can watch the installation status under: Top Panel –> Admin –> Manage installed tool shed repositories

Installation via web browser

• go to the admin page

• select Search and browse tool sheds

• Galaxy tool shed –> Sequence Analysis –> deeptools

• install deeptools

Installation with Docker

The deepTools Galaxy instance is also available as a docker container, for those wishing to use the Galaxy framework
but who also prefer a virtualized solution. This container is quite simple to install:

$ sudo docker pull quay.io/bgruening/galaxy-deeptools

To start and otherwise modify this container, please see the instructions on the docker-galaxy-stable github reposi-
tory. Note that you must use bgruening/galaxy-deeptools in place of bgruening/galaxy-stable in the examples, as the
deepTools Galaxy container is built on top of the galaxy-stable container.

Tip: For support, questions, or feature requests contact: deeptools@googlegroups.com

deepTools Galaxy. code @ github.

1.2 The tools

Note: With the release of deepTools 2.0, we renamed a couple of tools:

• heatmapper to tools/plotHeatmap

1.2. The tools 5

http://galaxyproject.org
http://toolshed.g2.bx.psu.edu/view/bgruening/deeptools
http://toolshed.g2.bx.psu.edu/view/bgruening/deeptools
http://wiki.galaxyproject.org/Admin/API#Generate_the_Admin_Account_API_Key
http://localhost:8080/admin
https://github.com/bgruening/docker-galaxy-stable
https://github.com/bgruening/docker-galaxy-stable
mailto:deeptools@googlegroups.com
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

• profiler to tools/plotProfile

• bamCorrelate to tools/multiBamSummary

• bigwigCorrelate to tools/multiBigwigSummary

• bamFingerprint to tools/plotFingerprint.

For more, see Changes in deepTools2.0.

• General principles
– Parameters to decrease the run time
– Filtering BAMs while processing

• Tools for BAM and bigWig file processing
– tools/multiBamSummary
– tools/multiBigwigSummary
– tools/correctGCBias
– tools/bamCoverage
– tools/bamCompare
– tools/bigwigCompare
– tools/computeMatrix

• Tools for QC
– tools/plotCorrelation
– tools/plotPCA
– tools/plotFingerprint
– tools/bamPEFragmentSize
– tools/computeGCBias
– tools/plotCoverage

• Heatmaps and summary plots
– tools/plotHeatmap
– tools/plotProfile
– tools/plotEnrichment

• Miscellaneous
– tools/computeMatrixOperations

6 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

tool type input files main output
file(s)

application

tools/multiBamSummarydata
inte-
gra-
tion

2 or more BAM interval-based
table of values

perform cross-sample analyses of
read counts –> plotCorrelation,
plotPCA

tools/multiBigwigSummarydata
inte-
gra-
tion

2 or more bigWig interval-based
table of values

perform cross-sample analyses of
genome-wide scores –>
plotCorrelation, plotPCA

tools/plotCorrelationvisual-
ization

bam/multiBigwigSummary
output

clustered heatmap visualize the Pearson/Spearman
correlation

tools/plotPCA visual-
ization

bam/multiBigwigSummary
output

2 PCA plots visualize the principal component
analysis

tools/plotFingerprintQC 2 BAM 1 diagnostic plot assess enrichment strength of a ChIP
sample

tools/computeGCBiasQC 1 BAM 2 diagnostic plots calculate the exp. and obs. GC
distribution of reads

tools/correctGCBiasQC 1 BAM, output
from
computeGCbias

1 GC-corrected
BAM

obtain a BAM file with reads
distributed according to the genome’s
GC content

tools/bamCoveragenor-
mal-
ization

BAM bedGraph or
bigWig

obtain the normalized read coverage
of a single BAM file

tools/bamComparenor-
mal-
ization

2 BAM bedGraph or
bigWig

normalize 2 files to each other (e.g.
log2ratio, difference)

tools/computeMatrixdata
inte-
gra-
tion

1 or more bigWig,
1 or more BED

zipped file for
plotHeatmap or
plotProfile

compute the values needed for
heatmaps and summary plots

tools/plotHeatmapvisual-
ization

computeMatrix
output

heatmap of read
coverages

visualize the read coverages for
genomic regions

tools/plotProfilevisual-
ization

computeMatrix
output

summary plot
(“meta-profile”)

visualize the average read coverages
over a group of genomic regions

tools/plotCoveragevisual-
ization

1 or more BAM 2 diagnostic plots visualize the average read coverages
over sampled genomic positions

tools/bamPEFragmentSizeinfor-
mation

1 BAM text with
paired-end
fragment length

obtain the average fragment length
from paired ends

tools/plotEnrichmentvisual-
ization

1 or more BAM
and 1 or more
BED/GTF

A diagnostic plot plots the fraction of alignments
overlapping the given features

tools/computeMatrixOperationsmis-
cella-
neous

1 or more BAM
and 1 or more
BED/GTF

A diagnostic plot plots the fraction of alignments
overlapping the given features

1.2.1 General principles

A typical deepTools command could look like this:

$ bamCoverage --bam myAlignedReads.bam \
--outFileName myCoverageFile.bigWig \

1.2. The tools 7

deepTools Documentation, Release 2.4.1

--outFileFormat bigwig \
--fragmentLength 200 \
--ignoreDuplicates \
--scaleFactor 0.5

You can always see all available command-line options via –help:

$ bamCoverage --help

• Output format of plots should be indicated by the file ending, e.g. MyPlot.pdf will return a pdf file,
MyPlot.png a png-file

• All tools that produce plots can also output the underlying data - this can be useful in cases where you don’t like
the deepTools visualization, as you can then use the data matrices produced by deepTools with your favorite
plotting tool, such as R

• The vast majority of command line options are also available in Galaxy (in a few cases with minor changes to
their naming).

Parameters to decrease the run time

• numberOfProcessors - Number of processors to be used

For example, setting --numberOfProcessors 10 will split up the workload internally into 10
chunks, which will be processed in parallel.

• region - Process only a single genomic region. This is particularly useful when you’re still trying to figure
out the best parameter setting. You can focus on a certain genomic region by setting, e.g., --region
chr2 or --region chr2:100000-200000

These parameters are optional and available throughout almost all deepTools.

Filtering BAMs while processing

Several deepTools modules allow for efficient processing of BAM files, e.g. bamCoverage and bamCompare. We
offer several ways to filter those BAM files on the fly so that you don’t need to pre-process them using other tools such
as samtools

• ignoreDuplicates Reads with the same orientation and start position will be considered only once. If
reads are paired, the mate is also evaluated

• minMappingQuality Only reads with a mapping quality score of at least this are considered

• samFlagInclude Include reads based on the SAM flag, e.g. --samFlagInclude 64 gets reads that are
first in a pair. For translating SAM flags into English, go to: https://broadinstitute.github.io/picard/explain-
flags.html

• samFlagExclude Exclude reads based on the SAM flags - see previous explanation.

These parameters are optional and available throughout deepTools.

Note: In version 2.3 we introduced a sampling method to correct the effect of filtering when normalizing using
bamCoverage or bamCompare. For previous versions, if you know that your files will be strongly affected by
the filtering of duplicates or reads of low quality then consider removing those reads before using bamCoverage or
bamCompare, as the filtering by deepTools is done after the scaling factors are calculated!

8 Chapter 1. Contents:

http://www.htslib.org/
https://broadinstitute.github.io/picard/explain-flags.html
https://broadinstitute.github.io/picard/explain-flags.html

deepTools Documentation, Release 2.4.1

1.2.2 Tools for BAM and bigWig file processing

tools/multiBamSummary

tools/multiBigwigSummary

tools/correctGCBias

tools/bamCoverage

tools/bamCompare

tools/bigwigCompare

tools/computeMatrix

1.2.3 Tools for QC

tools/plotCorrelation

tools/plotPCA

tools/plotFingerprint

tools/bamPEFragmentSize

tools/computeGCBias

tools/plotCoverage

1.2.4 Heatmaps and summary plots

tools/plotHeatmap

tools/plotProfile

tools/plotEnrichment

1.2.5 Miscellaneous

tools/computeMatrixOperations

deepTools Galaxy. code @ github.

1.3 Advanced features

Some of the features of deepTools are not self-explanatory. Below, we provide links to longer expositions on these
more advanced features:

• feature/blacklist

1.3. Advanced features 9

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

• feature/metagene

• feature/read_extension

• feature/unscaled_regions

• feature/read_offsets

• feature/deepBlue

• feature/plotFingerprint_QC_metrics

deepTools Galaxy. code @ github.

1.4 Example usage

• How we use deepTools for ChIP-seq analyses

1.4.1 Step-by-step protocols

This section should give you an overview of how to do many common tasks. We’re using screenshots from Galaxy
here. If you’re using the command-line version you can easily follow the given examples since the vast majority
of parameters is either indicated in Galaxy, too. Otherwise, just type the program name and the help option (e.g.
/deepTools/bin/bamCoverage --help), which will show you all the parameters and options available. Al-
ternatively, you can follow the respective link to the tool documentation here on readthedocs.

Note: Do let us know if you spot things that are missing or should be explained better! Just send an email to
deeptools@googlegroups.com.

All protocols assume that you have uploaded your files into a Galaxy instance with a deepTools installation, e.g.,
deepTools Galaxy. If you need help to get started with Galaxy in general, e.g. to upload your data, see Using
deepTools within Galaxy and Data import into Galaxy.

Tip: If you would like to try out the protocols with sample data, go to deepTools Galaxy –> “Shared Data” –> “Data
Libraries” –> “deepTools Test Files”. Simply select BED/BAM/bigWig files and click, “to History”. You can also
download the test data sets to your computer by clicking “Download” at the top.

10 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
mailto:deeptools@googlegroups.com
http://deeptools.ie-freiburg.mpg.de
http://deeptools.ie-freiburg.mpg.de

deepTools Documentation, Release 2.4.1

How to do...?

• QC and data processing
– I have downloaded/received a BAM file - how do I generate a file I can look at in a genome browser?
– How can I assess the reproducibility of my sequencing replicates?
– How do I know whether my sample is GC biased? And if it is, how do I correct for it?
– How do I get an input-normalized ChIP-seq coverage file?
– How can I compare the ChIP strength for different ChIP experiments?

• Heatmaps and summary plots
– How do I get a (clustered) heatmap of sequencing-depth-normalized read coverages around the

transcription start site of all genes?
– How can I compare the average signal for X-specific and autosomal genes for 2 or more different

sequencing experiments?
* How to obtain a BED file for X chromosomal and autosomal genes each
* Compute the average values for X and autosomal genes

QC and data processing

I have downloaded/received a BAM file - how do I generate a file I can look at in a genome browser?

• tool: tools/bamCoverage

• input: your BAM file with aligned reads

Of course, you could also look at your BAM file in the genome browser. However, generating a bigWig file of read
coverages will drastically reduce the size of the file, it also allows you to normalize the coverage to 1x sequencing
depth, which makes a visual comparison of multiple files more feasible.

1.4. Example usage 11

deepTools Documentation, Release 2.4.1

How can I assess the reproducibility of my sequencing replicates?

Typically, you’re going to be interested in the correlation of the read coverages for different replicates and dif-
ferent samples. What you want to see is that replicates should correlate better than non-replicates. The EN-
CODE consortium recommends that for messenger RNA, (...) biological replicates [should] display 0.9 correla-
tion for transcripts/features. For more information about correlation calculations, see the background description for
tools/plotCorrelation.

• tools: tools/multiBamSummary followed by tools/plotCorrelation

• input: BAM files

– you can compare as many samples as you want, though the more you use the longer the computation
will take

12 Chapter 1. Contents:

http://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf
http://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf

deepTools Documentation, Release 2.4.1

Tip: If you would like to do a similar analysis based on bigWig files, use the tool multiBigwigSummary instead.

How do I know whether my sample is GC biased? And if it is, how do I correct for it?

• input: BAM file

• use the tool tools/computeGCBias on that BAM file (default settings, just make sure your reference
genome and genome size are matching)

1.4. Example usage 13

deepTools Documentation, Release 2.4.1

• have a look at the image that is produced and compare it to the examples here

• if your sample shows an almost linear increase in exp/obs coverage (on the log scale of the lower plot), then
you should consider correcting the GC bias - if you think that the biological interpretation of this data would
otherwise be compromised (e.g. by comparing it to another sample that does not have an inherent GC bias)

– the GC bias can be corrected with the tool tools/correctGCBias using the second output of the
computeGCbias tool that you had to run anyway

14 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Warning: correctGCbias will add reads to otherwise depleted regions (typically GC-poor regions), that
means that you should not remove duplicates in any downstream analyses based on the GC-corrected BAM file.
We therefore recommend removing duplicates before doing the correction so that only those duplicate reads are
kept that were produced by the GC correction procedure.

How do I get an input-normalized ChIP-seq coverage file?

• input: you need two BAM files, one for the input and one for the ChIP-seq experiment

• tool: tools/bamCompare with ChIP = treatment, input = control sample

1.4. Example usage 15

deepTools Documentation, Release 2.4.1

How can I compare the ChIP strength for different ChIP experiments?

• tool: tools/plotFingerprint

• input: as many BAM files of ChIP-seq samples as you’d like to compare (it is helpful to include the input control
to see what a hopefully non-enriched sample looks like)

16 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Tip: For more details on the interpretation of the plot, see tools/plotFingerprint or select the tool within
the deepTools Galaxy and scroll down for more information.

Heatmaps and summary plots

How do I get a (clustered) heatmap of sequencing-depth-normalized read coverages around the transcription
start site of all genes?

• tools: tools/computeMatrix, then tools/plotHeatmap

• inputs:

– 1 bigWig file of normalized read coverages (e.g. the output of tools/bamCoverage or
tools/bamCompare)

– 1 BED or INTERVAL file of genes, e.g. obtained through Galaxy via “Get Data” –> “UCSC main
table browser” –> group: “Genes and Gene Predictions” –> (e.g.) “RefSeqGenes” –> send to Galaxy
(see screenshots below)

1.4. Example usage 17

deepTools Documentation, Release 2.4.1

• use tools/computeMatrix with the bigWig file and the BED file

• indicate reference-point (and whatever other option you would like to tune, see screenshot below)

18 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

• use the output from tools/computeMatrix with tools/plotHeatmap

– if you would like to cluster the signals, choose k-means clustering (last option of “advanced
options”) with a reasonable number of clusters (usually between 2 to 7)

1.4. Example usage 19

deepTools Documentation, Release 2.4.1

20 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

How can I compare the average signal for X-specific and autosomal genes for 2 or more different sequencing
experiments?

Make sure you’re familiar with computeMatrix and plotProfile before using this protocol.

• tools:

– Filter data on any column using simple expressions

– computeMatrix

– plotProfile

– (plotting the summary plots for multiple samples)

• inputs:

– several bigWig files (one for each sequencing experiment you would like to compare)

– two BED files, one with X-chromosomal and one with autosomal genes

How to obtain a BED file for X chromosomal and autosomal genes each

1. download a full list of genes via “Get Data” –> “UCSC main table browser” –> group:”Genes and Gene Predic-
tions” –> tracks: (e.g.) “RefSeqGenes” –> send to Galaxy

2. filter the list twice using the tool “Filter data on any column using simple expressions”

• first use the expression: c1==”chrX” to filter the list of all genes –> this will generate a list of X-linked
genes

• then re-run the filtering, now with c1!=”chrX”, which will generate a list of genes that do not belong to
chromosome X (!= indicates “not matching”)

Compute the average values for X and autosomal genes

• use tools/computeMatrix for all of the signal files (bigWig format) at once

– supply both filtered BED files (click on “Add new regions to plot” once) and label them

– indicate the corresponding signal files

• now use tools/plotProfile on the resulting file

– important: display the “advanced output options” and select “save the data underlying the average profile”
–> this will generate a table in addition to the summary plot images

1.4. Example usage 21

deepTools Documentation, Release 2.4.1

deepTools Galaxy. code @ github.

1.4.2 Gallery of deepTools plots

Note: If you have a nice deepTools plot that you’d like to share, we’ll be happy to add it to our Gallery! Just send us
an email: deeptools@googlegroups.com

Published example plots

• Normalized ChIP-seq signals and peak regions
• DNase accessibility at enhancers in murine ES cells
• TATA box enrichments around the TSS of mouse genes
• Visualizing the GC content for mouse and fly genes
• CpG methylation around murine transcription start sites in two different cell types
• Histone marks for genes of the mosquito Anopheles gambiae
• Signals of repressive chromatin marks, their enzymes and repeat element conservation scores

We’re trying to collect a wide variety of plots generated using deepTools. For the plots that we created ourselves, we
try to point out the options that were used to create each image, so perhaps these can serve as inspiration for you.

Normalized ChIP-seq signals and peak regions

This image was published by Ibrahim et al., 2014 (NAR). They used deepTools to generate extended reads per kilobase
per million reads at 10 base resolution and visualized the resulting coverage files in IGV.

22 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
mailto:deeptools@googlegroups.com
http://bioinformatics.oxfordjournals.org/content/early/2014/09/26/bioinformatics.btu568

deepTools Documentation, Release 2.4.1

DNase accessibility at enhancers in murine ES cells

The following image demonstrates that enhancer regions are typically small stretches of highly accessible chromatin
(more information on enhancers can be found, for example, here). In the heatmap, yellow and blue tiles indicate a large
numbers of reads that were sequenced (indicative of open chromatin) and black spots indicate missing data points. An
appropriate labeling of the y-axis was neglected.

1.4. Example usage 23

http://dx.doi.org/doi:10.1038/nature07829

deepTools Documentation, Release 2.4.1

24 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Fast Facts:

• computeMatrix mode: reference-point

• regions file: BED file with typical enhancer regions from Whyte et al., 2013 (download here)

• signal file: bigWig file with DNase signal from UCSC

• heatmap cosmetics: labels, titles, heatmap height

Command:

$ computeMatrix reference-point \
-S DNase_mouse.bigwig \
-R Whyte_TypicalEnhancers_ESC.bed \
--referencePoint center \
-a 2000 -b 2000 \ ## regions before and after the enhancer centers
-out matrix_Enhancers_DNase_ESC.tab.gz

$ plotHeatmap \
-m matrix_Enhancers_DNase_ESC.tab.gz\
-out hm_DNase_ESC.png \
--heatmapHeight 15 \
--refPointLabel enh.center \
--regionsLabel enhancers \
--plotTitle 'DNase signal' \

TATA box enrichments around the TSS of mouse genes

Using the TRAP suite, we produced a bigWig file that contained TRAP scores for the well-known TATA box motif
along the mouse genome. The TRAP score is a measure for the strength of a protein-DNA interaction at a given
DNA sequence; the higher the score, the closer the motif is to the consensus motif sequence. The following heatmap
demonstrates that:

• TATA-like motifs occur quite frequently

• there is an obvious clustering of TATA motifs slightly upstream of the TSS of many mouse genes

• there are many genes that do not contain TATA-like motifs at their promoter

Note that the heatmap shows all mouse RefSeq genes, so ca. 15,000 genes!

1.4. Example usage 25

http://dx.doi.org/10.1016/j.cell.2013.03.035
https://raw.github.com/fidelram/deepTools/master/gallery/Whyte_TypicalEnhancers_ESC.bed
http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseEscj7S129ME0SigRep1.bigWig
http://www.mybiosoftware.com/sequence-analysis/3894

deepTools Documentation, Release 2.4.1

Fast Facts:

• computeMatrix mode: reference-point

• regions file: BED file with all mouse genes (from UCSC table browser)

• signal file: bigWig file of TATA psem scores

• heatmap cosmetics: color scheme, labels, titles, heatmap height, only showing heatmap + colorbar

Command:

$ computeMatrix reference-point \
-S TATA_01_pssm.bw \
-R RefSeq_genes.bed \
--referencePoint TSS \
-a 100 -b 100 \
--binSize 5 \

$ plotHeatmap \
-m matrix_Genes_TATA.tab.gz \
-out hm_allGenes_TATA.png \
--colorMap hot_r \
--missingDataColor .4 \
--heatmapHeight 7 \
--plotTitle 'TATA motif' \
--whatToShow 'heatmap and colorbar' \
--sortRegions ascend

26 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Visualizing the GC content for mouse and fly genes

It is well known that different species have different genome GC contents. Here, we used two bigWig files where the
GC content was calculated for 50 base windows along the genome of mice and flies and the resulting scores visualized
for gene regions.

The images nicely illustrate the completely opposite GC distributions in flies and mice: while the gene starts of
mammalian genomes are enriched for Gs and Cs, fly promoters show depletion of GC content.

1.4. Example usage 27

deepTools Documentation, Release 2.4.1

28 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Fast Facts
computeMatrix mode scale-regions
regions files BED files with mouse and fly genes (from UCSC table browser)
signal file bigwig files with GC content
heatmap cosmetics color scheme, labels, titles, color for missing data was set to white, heatmap height

Fly and mouse genes were scaled to different sizes due to the different median sizes of the two species’ genes (genes of
D.melanogaster contain many fewer introns and are considerably shorter than mammalian genes). Thus, computeM-
atrix had to be run with slightly different parameters while the plotHeatmap commands were virtually identical (except
for the labels).

$ computeMatrix scale-regions \
-S GCcontent_Mm9_50_5.bw \
-R RefSeq_genes_uniqNM.bed \
-bs 50
-m 10000 -b 3000 -a 3000 \
-out matrix_GCcont_Mm9_scaledGenes.tab.gz \
--skipZeros \
--missingDataAsZero

$ computeMatrix scale-regions \
-S GCcontent_Dm3_50_5.bw \
-R Dm530.genes.bed \
-bs 50
-m 3000 -b 1000 -a 1000 \
-out matrix_GCcont_Dm3_scaledGenes.tab.gz \
--skipZeros --missingDataAsZero

$ plotHeatmap \
-m matrix_GCcont_Dm3_scaledGenes.tab.gz \
-out hm_GCcont_Dm3_scaledGenes.png \
--colorMap YlGnBu \
--regionsLabel 'fly genes' \
--heatmapHeight 15 \
--plotTitle 'GC content fly' &

$ plotHeatmap \
-m matrix_GCcont_Mm9_scaledGenes.tab.gz \
-out hm_GCcont_Mm9_scaledGenes.png \
--colorMap YlGnBu \
--regionsLabel 'mouse genes' \
--heatmapHeight 15 \
--plotTitle 'GC content mouse' &

CpG methylation around murine transcription start sites in two different cell types

In addition to the methylation of histone tails, the cytosines can also be methylated (for more information on CpG
methylation, read here). In mammalian genomes, most CpGs are methylated unless they are in gene promoters that
need to be kept unmethylated to allow full transcriptional activity. In the following heatmaps, we used genes expressed
primarily in ES cells and checked the percentages of methylated cytosines around their transcription start sites. The
blue signal indicates that very few methylated cytosines are found. When you compare the CpG methylation signal
between ES cells and neuronal progenitor (NP) cells, you can see that the majority of genes remain unmethylated,
but the general amount of CpG methylation around the TSS increases, as indicated by the stronger red signal and the
slight elevation of the CpG methylation signal in the summary plot. This supports the notion that genes stored in the
BED file indeed tend to be more expressed in ES than in NP cells.

This image was taken from Chelmicki & Dündar et al. (2014), eLife.

1.4. Example usage 29

http://www.nature.com/scitable/topicpage/the-role-of-methylation-in-gene-expression-1070
http://elifesciences.org/content/3/e02024

deepTools Documentation, Release 2.4.1

30 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Fast Facts
computeMatrix
mode

reference-point

regions files BED file mouse genes expressed in ES cells
signal file bigWig files with fraction of methylated cytosins (from Stadler et al., 2011)
heatmap
cosmetics

color scheme, labels, titles, color for missing data was set to customized color, y-axis of
profiles were changed, heatmap height

The commands for the bigWig files from the ES and NP cells were the same:

$ computeMatrix reference-point \
-S GSE30202_ES_CpGmeth.bw \
-R activeGenes_ESConly.bed \
--referencePoint TSS \
-a 2000 -b 2000 \
-out matrix_Genes_ES_CpGmeth.tab.gz

$ plotHeatmap \
-m matrix_Genes_ES_CpGmeth.tab.gz \
-out hm_activeESCGenes_CpG_ES_indSort.png \
--colorMap jet \
--missingDataColor "#FFF6EB" \
--heatmapHeight 15 \
--yMin 0 --yMax 100 \
--plotTitle 'ES cells' \
--regionsLabel 'genes active in ESC'

Histone marks for genes of the mosquito Anopheles gambiae

This figure was taken from Gómez-Díaz et al. (2014): Insights into the epigenomic landscape of the human malaria
vector *Anopheles gambiae*. From Genet Aug15;5:277. It shows the distribution of H3K27Me3 (left) and H3K27Ac
(right) over gene features in A. gambiae midguts. The enrichment or depletion is shown relative to chromatin input.
The regions in the map comprise gene bodies flanked by a segment of 200 bases at the 5 end of TSSs and TTSs.
Average profile across gene regions ±200 bases for each histone modification are shown on top.

1.4. Example usage 31

http://dx.doi.org/10.1038/nature10716
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133732/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133732/

deepTools Documentation, Release 2.4.1

32 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Signals of repressive chromatin marks, their enzymes and repeat element conservation scores

This image is from Bulut-Karsliogu and De La Rosa-Velázquez et al. (2014), Mol Cell. The heatmaps depict various
signal types for unscaled peak regions of proteins and histone marks associated with repressed chromatin. The peaks
were separated into those containing long interspersed elements (LINEs) on the forward and reverse strand. The
signals include normalized ChIP-seq signals for H3K9Me3, Suv39h1, Suv39h2, Eset, and HP1alpha-EGFP, followed
by LINE and ERV content and repeat conservation scores.

deepTools Galaxy. code @ github.

1.4.3 How we use deepTools for ChIP-seq analyses

To get a feeling for what deepTools can do, we’d like to give you a brief glimpse into how we typically use deepTools
for ChIP-seq analyses. For more detailed exampes and descriptions of the tools, simply follow the respective links.

1.4. Example usage 33

http://www.sciencedirect.com/science/article/pii/S1097276514004535
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

Note: While some tools, such as tools/plotFingerprint, specifically address ChIP-seq-issues, the majority
of tools is widely applicable to deep-sequencing data, including RNA-seq.

As shown in the flow chart above, our work usually begins with one or more FASTQ file(s) of deeply-sequenced
samples. After preliminary quality control using FASTQC, we align the reads to the reference genome, e.g., using
bowtie2. The standard output of bowtie2 (and other mapping tools) is in the form of sorted and indexed BAM files that
provide the common input and starting point for all subsequent deepTools analyses. We then use deepTools to assess
the quality of the aligned reads:

1. Correlation between BAM files (tools/multiBamSummary and tools/plotCorrelation). To-
gether, these two modules perform a very basic test to see whether the sequenced and aligned reads meet your
expectations. We use this check to assess reproducibility - either between replicates and/or between different
experiments that might have used the same antibody or the same cell type, etc. For instance, replicates should
correlate better than differently treated samples.

Tip: You can also assess the correlation of bigWig files using tools/multiBigwigSummary.

34 Chapter 1. Contents:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

deepTools Documentation, Release 2.4.1

2. Coverage check (tools/plotCoverage). To see how many bp in the genome are actually covered by (a
good number) of sequencing reads, we use tools/plotCoverage which generates two diagnostic plots that
help us decide whether we need to sequence deeper or not. The option --ignoreDuplicates is particularly
useful here!

For paired-end samples, we often additionally check whether the fragment sizes are more or less what we would
expected based on the library preparation. The module tools/bamPEFragmentSize can be used for that.

1.4. Example usage 35

deepTools Documentation, Release 2.4.1

3. GC-bias check (tools/computeGCBias). Many sequencing protocols require several rounds of PCR-
based DNA amplification, which often introduces notable bias, due to many DNA polymerases preferentially
amplifying GC-rich templates. Depending on the sample (preparation), the GC-bias can vary significantly
and we routinely check its extent. When we need to compare files with different GC biases, we use the
tools/correctGCBias module. See the paper by Benjamini and Speed for many insights into this prob-
lem.

4. Assessing the ChIP strength. We do this quality control step to get a feeling for the signal-to-noise ratio in
samples from ChIP-seq experiments. It is based on the insights published by Diaz et al.

36 Chapter 1. Contents:

http://nar.oxfordjournals.org/content/40/10/e72
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml

deepTools Documentation, Release 2.4.1

Once we’re satisfied with the basic quality checks, we normally convert the large BAM files into a leaner data format,
typically bigWig. bigWig files have several advantages over BAM files, mainly stemming from their significantly
decreased size:

• useful for data sharing and storage

• intuitive visualization in Genome Browsers (e.g. IGV)

• more efficient downstream analyses are possible

The deepTools modules tools/bamCompare and tools/bamCoverage not only allow for simple conversion of
BAM to bigWig (or bedGraph for that matter), but also for normalization, such that different samples can be compared
despite differences in their sequencing depth.

Finally, once all the converted files have passed our visual inspections (e.g., using the Integrative Ge-
nomics Viewer), the fun of downstream analysis with tools/computeMatrix, tools/plotHeatmap and
tools/plotProfile can begin!

deepTools Galaxy. code @ github.

1.5 Changes in deepTools2.0

• Major changes
– Accommodating additional data types
– Structural updates
– Renamed tools
– Increased efficiency
– New features and tools

• Minor changes
– Changed parameters names and settings
– Bug fixes

1.5. Changes in deepTools2.0 37

http://www.broadinstitute.org/igv/
https://www.broadinstitute.org/igv/
https://www.broadinstitute.org/igv/
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

1.5.1 Major changes

Note: The major changes encompass features for increased efficiency, new sequencing data types, and additional
plots, particularly for QC.

Moreover, deepTools modules can now be used by other python programs. The deepTools API example is part of the
new documentation.

Accommodating additional data types

• correlation and comparisons can now be calculated for bigWig files (in addition to BAM files) using
multiBigwigSummary and bigwigCompare

• RNA-seq: split-reads are now natively supported

• MNase-seq: using the new option --MNase in bamCoverage, one can now compute read coverage only
taking the 2 central base pairs of each mapped fragment into account.

Structural updates

• All modules have comprehensive and automatic tests that evaluate proper functioning after any modification of
the code.

• Virtualization for stability: we now provide a docker image and enable the easy deployment of deepTools via
the Galaxy toolshed.

• Our documentation is now version-aware thanks to readthedocs and sphinx.

• The API is public and documented.

Renamed tools

• heatmapper to tools/plotHeatmap

• profiler to tools/plotProfile

• bamCorrelate to tools/multiBamSummary

• bigwigCorrelate to tools/multiBigwigSummary

• bamFingerprint to tools/plotFingerprint

Increased efficiency

• We dramatically improved the speed of bigwig related tools (tools/multiBigwigSummary and
computeMatrix) by using the new pyBigWig module.

• It is now possible to generate one composite heatmap and/or meta-gene image based on multiple bigwig files
in one go (see tools/computeMatrix, tools/plotHeatmap, and tools/plotProfile for exam-
ples)

• computeMatrix now also accepts multiple input BED files. Each is treated as a group within a sample and
is plotted independently.

38 Chapter 1. Contents:

https://github.com/dpryan79/pyBigWig

deepTools Documentation, Release 2.4.1

• We added additional filtering options for handling BAM files, decreasing the need for prior filtering using
tools other than deepTools: The --samFlagInclude and --samFlagExclude parameters can, for exam-
ple, be used to only include (or exclude) forward reads in an analysis.

• We separated the generation of read count tables from the calculation of pairwise correlations that was pre-
viously handled by bamCorrelate. Now, read counts are calculated first using multiBamSummary or
multiBigWigCoverage and the resulting output file can be used for calculating and plotting pairwise cor-
relations using plotCorrelation or for doing a principal component analysis using plotPCA.

New features and tools

• Correlation analyses are no longer limited to BAM files – bigwig files are possible, too! (see
tools/multiBigwigSummary)

• Correlation coefficients can now be computed even if the data contains NaNs.

• Added new quality control tools:

– use tools/plotCoverage to plot the coverage over base pairs

– use tools/plotPCA for principal component analysis

– tools/bamPEFragmentSize can be used to calculate the average fragment size for paired-end
read data

• Added the possibility for hierarchical clustering, besides k-means to plotProfile and plotHeatmap

• plotProfile has many more options to make compelling summary plots

1.5.2 Minor changes

Changed parameters names and settings

• computeMatrix can now read files with DOS newline characters.

• --missingDataAsZero was renamed to --skipNonCoveredRegions for clarity in bamCoverage
and bamCompare.

• Read extension was made optional and we removed the need to specify a default fragment length for most of
the tools: --fragmentLength was thus replaced by the new optional parameter --extendReads.

• Added option --skipChromosomes to multiBigwigSummary, which can be used to, for example, skip
all ‘random’ chromosomes.

• Added the option for adding titles to QC plots.

Bug fixes

• Resolved an error introduced by numpy version 1.10 in computeMatrix.

• Improved plotting features for plotProfile when using as plot type: ‘overlapped_lines’ and ‘heatmap’

• Fixed problem with BED intervals in multiBigwigSummary and multiBamSummary that returned
wrongly labeled raw counts.

• multiBigwigSummary now also considers chromosomes as identical when the names between samples
differ by ‘chr’ prefix, e.g. chr1 vs. 1.

1.5. Changes in deepTools2.0 39

deepTools Documentation, Release 2.4.1

• Fixed problem with wrongly labeled proper read pairs in a BAM file. We now have additional checks to deter-
mine if a read pair is a proper pair: the reads must face each other and are not allowed to be farther apart than
4x the mean fragment length.

• For bamCoverage and bamCompare, the behavior of scaleFactor was updated such that now, if given
in combination with the normalization options (--normalizeTo1x or --normalizeUsingRPKM), the
given scaling factor will be multiplied with the factor computed by the respective normalization method.

deepTools Galaxy. code @ github.

1.6 Using deepTools within Galaxy

Galaxy is a tremendously useful platform developed by the Galaxy Team at Penn State and the Emory University.
This platform is meant to offer access to a large variety of bioinformatics tools that can be used without computer
programming experiences. That means, that the basic features of Galaxy will apply to every tool, i.e. every tool
provided within a Galaxy framework will look very similar and will follow the concepts of Galaxy.

Our publicly available deepTools Galaxy instance can be found here: deeptools.ie-freiburg.mpg.de. This server also
contains some additional tools that will enable users to analyse and visualize data from high-throughput sequencing
experiments, starting from aligned reads.

Table of content

• Basic features of Galaxy
– The start site
– Details
– Handling failed files
– Workflows

1.6.1 Data import into Galaxy

There are three main ways to populate your Galaxy history with data files plus an additional one for sharing data
within Galaxy.

• Upload files from your computer
• Import data sets from the Galaxy data library
• Download annotation files from public data bases
• Copy data sets between histories

Upload files from your computer

The data upload of files smaller than 2 GB that lie on your computer is fairly straight-forward: click on the category
“Get data” and choose the tool “Upload file”. Then select the file via the “Browse” button.

40 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
http://galaxyproject.org/
http://deeptools.ie-freiburg.mpg.de/

deepTools Documentation, Release 2.4.1

For files greater than 2GB, there’s the option to upload via an FTP server. If your data is available via an URL that
links to an FTP server, you can simply paste the URL in the empty text box.

If you do not have access to an FTP server, you can directly upload to our Galaxy’s FTP.

1. Register with deeptools.ie-freiburg.mpg.de (via “User” “register”; registration requires an email address and is
free of charge)

2. You will also need an FTP client, e.g. filezilla.

3. Then login to the FTP client using your deepTools Galaxy user name and password (host: deeptools.ie-
freiburg.mpg.de). Down below you see a screenshot of what that looks like with filezilla.

4. Copy the file you wish to upload to the remote site (in filezilla, you can simply drag the file to the window on
the right hand side)

5. Go back to deepTools Galaxy.

6. Click on the tool “Upload file” (“Files uploaded via FTP”) - here, the files you just copied over via filezilla
should appear. Select the files you want and hit “execute”. They will be moved from the FTP server to your
history (i.e. they will be deleted from the FTP once the upload was successful).

1.6. Using deepTools within Galaxy 41

https://filezilla-project.org/
http://deeptools.ie-freiburg.mpg.de/

deepTools Documentation, Release 2.4.1

Import data sets from the Galaxy data library

If you would like to play around with sample data, you can import files that we have saved within the general data
storage of the deepTools Galaxy server. Everyone can import them into his or her own history, they will not contribute
to the user’s disk quota.

You can reach the data library via “Shared Data” in the top menu, then select “Data Libraries”.

Within the Data Library you will find a folder called “Sample Data” that contains data that we downloaded from the
Roadmap project and UCSC More precisely, we donwloaded the [FASTQ][] files of various ChIP-seq samples and
the corresponding input and mapped the reads to the human reference genome (version hg19) to obtain the [BAM][]
files you see. In addition, you will find bigWig files created using bamCoverage and some annotation files in BED
format as well as RNA-seq data.

Note: To keep the file size smallish, all files contain data for chromosome 19 and chromosome X only!

42 Chapter 1. Contents:

http://www.roadmapepigenomics.org/data
http://genome.ucsc.edu/

deepTools Documentation, Release 2.4.1

Download annotation files from public data bases

In many cases you will want to query your sequencing data results for known genome annotation, such as genes,
exons, transcription start sites etc. These information can be obtained via the two main sources of genome annotation,
UCSC and BioMart.

1.6. Using deepTools within Galaxy 43

http://genome.ucsc.edu/
http://www.biomart.org/

deepTools Documentation, Release 2.4.1

Warning: UCSC and BioMart cater to different ways of genome annotation, i.e. genes defined in UCSC might
not correspond to the same regions in a gene file downloaded from BioMart. (For a brief overview over the issues
of genome annotation, you can check out Wikipedia, if you always wanted to know much more about those issues,
this might be a good start.)

You can access the data stored at UCSC or BioMart conveniently through our Galaxy instance which will import the
resulting files into your history. Just go to “Get data” “UCSC” or “BioMart”.

The majority of annotation files will probably be in [BED][] format, however, you can also find other data sets. UCSC,
for example, offers a wide range of data that you can browse via the “group” and “track” menus (for example, you
could download the GC content of the genome as a signal file from UCSC via the “group” menu (“Mapping and
Sequencing Tracks”).

Warning: The download through this interface is limited to 100,000 lines per file which might not be sufficient
for some mammalian data sets.

Here’s a screenshot from downloading a BED-file of all RefSeq genes defined for the human genome (version hg19):

And here’s how you would do it for the BioMart approach:

44 Chapter 1. Contents:

http://en.wikipedia.org/wiki/Genome_project
http://www.ncbi.nlm.nih.gov/pubmed/22510764

deepTools Documentation, Release 2.4.1

Tip: Per default, BioMart will not output a BED file like UCSC does. It is therefore important that you make sure
you get all the information you need (most likely: chromosome, gene start, gene end, ID, strand) via the “Attributes”
section. You can click on the “Results” button at any time to check the format of the table that will be sent to Galaxy
(Note that the strand information will be decoded as 1 for “forward” or “plus” strand and -1 for “reverse” or “minus”
strand).

Warning: Be aware, that BED files from UCSC will have chromosomes labelled with “chr” while ENSEMBL
usually returns just the number – this might lead to incompatibilities, i.e. when working with annotations from
UCSC and ENSEMBL, you need to make sure to use the same naming!

Copy data sets between histories

If you have registered with deepTools Galaxy you can have more than one history.

In order to minimize the disk space you’re occupying we strongly suggest to copy data sets between histories when
you’re using the same data set in different histories.

Note: Copying data sets is only possible for registered users.

1.6. Using deepTools within Galaxy 45

deepTools Documentation, Release 2.4.1

Copying can easily be done via the History panel’s option button “Copy dataset”. In the main frame, you should
now be able to select the history you would like to copy from on the left hand side and the target history on the right
hand side.

More help

Hint: If you encounter a failing data set (marked in red), please send a bug report via the Galaxy bug report button
and we will get in touch if you indicate your email address.

http://wiki.galaxyproject.org/Learn Help for Galaxy usage in general
deepTools Galaxy FAQs Frequently encountered issues with our specific Galaxy instance
deeptools@googlegroups.com For issues not addressed in the FAQs

deepTools Galaxy. code @ github.

1.6.2 Which tools can I find in the deepTools Galaxy?

As mentioned before, each Galaxy installation can be tuned to the individual interests. Our goal is to provide a
Galaxy that enables you to quality check, process and normalize and subsequently visualize your data obtained
by high-throughput DNA sequencing.

Tip: If you do not know the difference between a BAM and a BED file, that’s fine. You can read up on them in our
Glossary of NGS terms.

Tip: For more specific help, check our Galaxy-related FAQ and the Step-by-step protocols.

We provide the following kinds of tools:

46 Chapter 1. Contents:

http://wiki.galaxyproject.org/Learn
mailto:deeptools@googlegroups.com
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

• deepTools
– Tools for BAM and bigWig file processing
– Tools for QC of NGS data
– Heatmaps and summary plots

• Working with text files and tables
– Text manipulation
– Filter and Sort
– Join, Subtract, Group

• Basic arithmetics for tables

deepTools

The most important category is called “deepTools” that contains all the main tools we have developed.

Tools for BAM and bigWig file processing

multiBamSummary get read counts for the binned genome or user-specified regions
multiBigwigSummary calculate score summaries for the binned genome or user-specified regions
correctGCBias obtain a BAM file with reads distributed according to the genome’s GC content
bamCoverage obtain the normalized read coverage of a single BAM file
bamCompare normalize 2 BAM files to each other (e.g. log2ratio, difference)
bigwigCompare normalize the scores of two bigWig files to each other (e.g., ratios)
computeMatrix compute the values needed for heatmaps and summary plots

Tools for QC of NGS data

plotCorrelation calculate and visualize the pairwise Spearman or Pearson correlation of read counts (or
other scores)

plotPCA perform PCA and visualize the results
plotFingerprint assess the ChIP enrichment strength
bamPEFragmentSizeobtain the average fragment length for paired-end samples
computeGCBias assess the GC bias by calculating the expected and observed GC distribution of aligned

reads
plotCoverage obtain the normalized read coverage of a single BAM file

Heatmaps and summary plots

plotHeatmap visualize read counts or other scores in heatmaps with one row per genomic region
plotProfile visualize read counts or other scores using average profiles (e.g., meta-gene profiles)

For each tool, you can find example usages and tips within Galaxy once you select the tool.

In addition, you may want to check our pages about Example usage, particularly Step-by-step protocols.

Working with text files and tables

In addition to deepTools that were specifically developed for the handling of NGS data, we have incorporated several
standard Galaxy tools that enable you to manipulate tab-separated files such as gene lists, peak lists, data matrices etc.

1.6. Using deepTools within Galaxy 47

deepTools Documentation, Release 2.4.1

There are 3 main categories;

Text manipulation

Unlike Excel, where you can easily interact with your text and tables via the mouse, data manipulations within Galaxy
are strictly based on commands.

If you feel like you would like to do something to certain columns of a data set, go through the tools of this category!

Example actions are: * adding columns * extracting columns * pasting two files side by side * selecting random lines
* etc.

A very useful tool of this category is called Trim: if you need to remove some characters from a column, this tool’s
for you! (for example, sometimes you need to adjust the chromosome naming between two files from different source
- using Trim, you can remove the “chr” in front of the chromosome name)

Filter and Sort

In addition to the common sorting and filtering, there’s the very useful tool to select lines that match an
expression. For example, using the expression c1==’chrM’ will select all rows from a BED file with regions
located on the mitochondrial chromosome.

48 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Join, Subtract, Group

The tools of this category are very useful if you have several data sets that you would like to work with, e.g. by
comparing them.

Basic arithmetics for tables

We offer some very basic mathematical operations on values stored with tables. The Summary Statistics can
be used to calculate the sum, mean, standard deviation and percentiles for a set of numbers, e.g. for values stored in a
specific column.

More help

Hint: If you encounter a failing data set (marked in red), please send a bug report via the Galaxy bug report button

1.6. Using deepTools within Galaxy 49

deepTools Documentation, Release 2.4.1

and we will get in touch if you indicate your email address.

http://wiki.galaxyproject.org/Learn Help for Galaxy usage in general
deepTools Galaxy FAQs Frequently encountered issues with our specific Galaxy instance
deeptools@googlegroups.com For issues not addressed in the FAQs

deepTools Galaxy. code @ github.

1.6.3 Basic features of Galaxy

Galaxy is a web-based platform for data intensive, bioinformatics-dependent research and it is being developed by
Penn State and John Hopkins University. The original Galaxy can be found here.

Since it is impossible to meet all bioinformatics needs – that can range from evolutionary analysis to data from mass
spectrometry to high-throughput DNA sequencing (and way beyond) – with one single web server, many institutes
have installed their own versions of the Galaxy platform tuned to their specific needs.

Our deepTools Galaxy is such a specialized server dedicated to the analysis of high-throughput DNA sequencing data.
The overall makeup of this web server, however, is the same as for any other Galaxy installation, so if you’ve used
Galaxy before, you will learn to use deepTools in no time!

The start site

Here is a screenshot of what the start site will approximately look like:

The start site contains 4 main features:

Top menu Your gateway away from the actual analysis part into other sections of Galaxy, e.g. workflows and
shared data.

Tool panel What can be done? Find all tools installed in this Galaxy instance
Main
frame

What am I doing? This is your main working space where input will be required from you once
you’ve selected a tool.

History
panel

What did I do? The history is like a log book: everything you ever did is recorded here.

For those visual learners, here’s an annotated screenshot:

50 Chapter 1. Contents:

http://wiki.galaxyproject.org/Learn
mailto:deeptools@googlegroups.com
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
https://galaxyproject.org/
http://deeptools.ie-freiburg.mpg.de/

deepTools Documentation, Release 2.4.1

Details

In the default state of the tool panel you see the tool categories, e.g. “Get Data”. If you click on them, you will see the
individual tools belonging to each category, e.g. “Upload File from your computer”, “UCSC Main table browser” and
“Biomart central server” in case you clicked on “Get Data”. To use a tool such as “Upload File from your computer”,
just click on it.

The tool *search* panel is extremely useful as it allows you to enter a key word (e.g. “bam”) that will lead to all the
tools mentioning the key word in the tool name.

Once you’ve uploaded any kind of data, you will find the history on the right hand side filling up with green tiles. Each
tile corresponds to one data set that you either uploaded or created. The data sets can be images, raw sequencing files,
text files, tables - virtually anything. The content of a data set cannot be modified - every time you want to change
something within a data file (e.g. you would like to sort the values or add a line or cut a column), you will have to use
a Galaxy tool that will lead to a new data set being produced. This behaviour is often confusing for Galaxy novices
(as histories tend to accumulate data sets very quickly), but it is necessary to enforce the strict policy of documenting
every modification to a given data set. Eventhough your history might be full of data sets with strange names, you will
always be able to track back the source and evolution of each file. Also, every data set can be downloaded to your
computer individually. Alternatively, you can download an entire history or share the history with another user.

Have a look at the following screenshot to get a feeling for how many information Galaxy keeps for you (which makes
it very feasible to reproduce any analysis):

1.6. Using deepTools within Galaxy 51

deepTools Documentation, Release 2.4.1

52 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

Each data set can have 4 different states that are intuitively color-coded:

Handling failed files

If you encounter a failed file after you’ve run a tool, please do the following steps (in this order):

1. click on the center button on the lower left corner of the failed data set (i): did you chose the
correct data files?

2. if you’re sure that you chose the correct files, hit the re-run button (blue arrow in the lower left
corner) - check again whether your files had the correct file format. If you suspect that the format
might be incorrectly assigned (e.g. a file that should be a BED file is labelled as a tabular file),
click the edit button (the pencil) of the input data file - there you can change the corresponding
attributes

3. if you’ve checked your input data and the error is persisting, click on the green bug (lower left
corner of the failed data set) and send the bug report to us. You do not need to indicate a valid
email-address unless you would like us to get in touch with you once the issue is solved.

Workflows

Workflows are Galaxy’s equivalent of protocols. This is a very useful feature as it allows users to share their protocols
and bioinformatic analyses in a very easy and transparent way. This is the graphical representation of a Galaxy
workflow that can easily be modified via drag’n’drop within the workflows manual (you must be registered with
deepTools Galaxy to be able to generate your own workflows or edit published ones).

More help

Hint: If you encounter a failing data set (marked in red), please send a bug report via the Galaxy bug report button
and we will get in touch if you indicate your email address.

http://wiki.galaxyproject.org/Learn Help for Galaxy usage in general
deepTools Galaxy FAQs Frequently encountered issues with our specific Galaxy instance
deeptools@googlegroups.com For issues not addressed in the FAQs

1.6. Using deepTools within Galaxy 53

http://wiki.galaxyproject.org/Learn
mailto:deeptools@googlegroups.com

deepTools Documentation, Release 2.4.1

deepTools Galaxy. code @ github.

1.7 General FAQ

Feel free to contribute your questions via deeptools@googlegroups.com

Note: We also have a Galaxy-related FAQ with questions that are more specific to Galaxy rather than deepTools
usage.

• How does deepTools handle data from paired-end sequencing?
• How can I test a tool with little computation time?
• Can I specify more than one chromosome in the --regions option?

– General workaround
– Build-in solutions

• When should I exclude regions from computeGCBias?
• When should I use bamCoverage or bamCompare?
• What should I pay attention to when dealing with RNA-seq data?
• How does computeMatrix handle overlapping genome regions?

– Galaxy-based work around
– Command line-based work arounds

• Why does the maximum value in the heatmap not equal the maximum value in the matrix?
• The heatmap I generated looks very “coarse”, I would like a much more fine-grained image.
• How can I change the automatic labels of the clusters in a k-means clustered heatmap?
• How can I manually specify several groups of regions (instead of clustering)?
• What do I have to pay attention to when working with a draft version of a genome?
• How do I calculate the effective genome size for an organism that’s not in your list?

– Use GEM
– Use faCount
– Use bamCoverage
– Use genomeCoverageBed

• Where can I download the 2bit genome files required for computeGCBias?

1.7.1 How does deepTools handle data from paired-end sequencing?

Generally, all the modules working on BAM files (multiBamSummary, bamCoverage, bamCompare,
plotFingerprint, computeGCBias) automatically recognize paired-end sequencing data and will use the frag-
ment size based on the distance between read pairs. You can by-pass the typical fragment handling on mate pairs with
the option --doNotExtendPairedEnds (can be found under “advanced options” in Galaxy).

1.7.2 How can I test a tool with little computation time?

When you’re playing around with the tools to see what kinds of results they will produce, you can limit the op-
eration to one chromosome or a specific region to save time. In Galaxy, you will find this under “advanced out-
put options” –> “Region of the genome to limit the operation to”. The command line option is called --region
(CHR:START:END).

54 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
mailto:deeptools@googlegroups.com

deepTools Documentation, Release 2.4.1

The following tools currently have this option:

• tools/multiBamSummary

• tools/plotFingerprint

• tools/computeGCBias, tools/correctGCBias

• tools/bamCoverage, tools/bamCompare

It works as follows: first, the entire genome represented in the BAM file will be regarded and sampled, then all the
regions or sampled bins that do not overlap the region indicated by the user will be discarded.

Note: You can limit the operation to only one chromosome (or one specific locus on a chromosome) at a time. If you
would like to limit the operation to more than one region, see the answer to the next question.

1.7.3 Can I specify more than one chromosome in the --regions option?

The short answer is: no.

Several programs allow specifying a specific regions. For these, the input must be in the format of chr:start:end,
for example “chr10” or “chr10:456700:891000”.

For these programs, it is not possible to indicate more than one region, e.g. chr10, chr11 - this will not work! Here
are some ideas for workarounds if you none-the-less need to do this:

General workaround

Since all the tools that have the --region option work on BAM files, you could filter your reads prior to running the
program, e.g. using intersectBed with --abam or samtools view. Then use the resulting (smaller) BAM
file with the deepTools program of your choice.

$ samtools view -b -L regionsOfInterest.bed Reads.bam > ReadsOverlappingWithRegionsOfInterest.bam

or

$ intersectBed -abam Reads.bam -b regionsOfInterest.bed > ReadsOverlappingWithRegionsOfInterest.bam

Build-in solutions

computeGCBias and multiBamSummary offer build-in solutions so that you do not need to resort to tools outside
of deepTools.

tools/multiBamSummary has two modes, bins and BED. If you make use of the BED mode, you can supply
a BED file of regions that you would like to limit the operation to. This will do the same thing as in the general
workaround mentioned above.

tools/computeGCBias has a --filterOut option. If you to create a BED file that contains all the re-
gions you are not interested in, you can then supply this file to computeGCBias --filterOut
Regions_to_be_ignored.bed and those regions will subsequently be ignored.

1.7. General FAQ 55

deepTools Documentation, Release 2.4.1

1.7.4 When should I exclude regions from computeGCBias?

Note: In general, we recommend to only correct for GC bias (using tools/computeGCBias followed by
tools/correctGCBias) if the majority of the genome (e.g., for mouse and human genomes the region between
30-60%) is GC-biased and you want to compare this sample with another sample that is not GC-biased.

Sometimes, a certain GC bias is expected, for example for ChIP samples of H3K4Me3 in mammalian samples where
GC-rich promoters are expected to be enriched. To not confound the GC bias caused by the library preparation with
the inherent, expected GC-bias, we incorporated the possibility to supply a file of regions to computeGCBias that
will be excluded from the GC bias calculation. This file should typically contain those regions that one expects to be
significantly enriched. This allows the tool to focus on background regions.

1.7.5 When should I use bamCoverage or bamCompare?

Both tools produce bigWig files, i.e. they translate the read-centered information from a BAM file into scores for
genomic regions of a fixed size. The only difference is the number of BAM files that the tools use as input: while
tools/bamCoverage will only take one BAM file and produce a coverage file that is mostly normalized for
sequencing depth, tools/bamCompare will take two BAM files that can be compared with each other using several
mathematical operations.

bamCompare will always normalize for sequencing depth like bamCoverage, but then it will perform additional
calculations depending on what the user chose, for example:

• ChIP vs. input obtain a bigWig file of log2ratios(ChIP/input)

• treatment vs. control obtain a bigWig file of differences (treatment - control)

• replicate 1 and replicate 2 obtain a bigWig file where the values from two BAM files are summed up (replicate
1 + replicate 2)

1.7.6 What should I pay attention to when dealing with RNA-seq data?

By default, deepTools (since version 2) makes use of the information stored in the so-called CIGAR string of the
alignment file (SAM/BAM specification). The CIGAR tells precisely to which bases of the reference a read maps -
and, accordingly, which bases are skipped in the case of reads that span introns. These so-called split reads are natively
handled by all modules of deepTools 2.0.

Warning: It is generally not recommended to activate the deepTools parameter --extendReads for RNA-seq
data.
This is because there is no verified information on the fragment alignment outside the actual read sequence. A
simple extension of a read over uncovered parts would probably be wrong for a lot of fragments! Activating the
read extension also deactivates the utilization of the CIGAR.

56 Chapter 1. Contents:

https://samtools.github.io/hts-specs/SAMv1.pdf

deepTools Documentation, Release 2.4.1

1.7.7 How does computeMatrix handle overlapping genome regions?

If the BED file supplied to tools/computeMatrix contains regions that overlap, the tool will report those regions
and issue warnings, but they will just be taken as is. If you would like to prevent this, then clean the BED file before
using computeMatrix. There are several methods for modifying your BED file.

Let’s say your file looks like this:

$ cat testBed.bed
chr1 10 20 region1
chr1 7 15 region2
chr1 18 29 region3
chr1 35 40 region4
chr1 10 20 region1Duplicate

Galaxy-based work around

To eliminate entries with identical genome coordinates, first use the tool “Count” and then filter out all entries that are
present more than once.

1.7. General FAQ 57

deepTools Documentation, Release 2.4.1

Command line-based work arounds

• if you just want to eliminate identical entries (here: region1 and region1Duplicate), use sort and uniq in the
shell (note that the label of the identical regions is different - as uniq can only ignore fields at the beginning of
a file, use rev to revert the sorted file, then uniq with ignoring the first field (which is now the name column)
and then revert back:

$ sort -k1,1 -k2,2n testBed.bed | rev | uniq -f1 | rev
chr1 10 20 region1
chr1 7 15 region2
chr1 18 29 region3
chr1 35 40 region4

• if you would like to merge all overlapping regions into one big one, use the mergeBed from the BEDtools
suite:

– again, the BED file must be sorted first

– -n and -nms tell mergeBed to output the number of overlapping regions and the names of them

– in the resulting file, regions 1, 2 and 3 are merged

$ sort -k1,1 -k2,2n testBed.bed | mergeBed -i stdin -n -nms
chr1 7 29 region2;region1;region1Duplicate;region3 4
chr1 35 40 region4 1

• if you would like to keep only regions that do not overlap with any other region in the same BED file, use the
same mergeBed routine but subsequently filter out those regions where several regions were merged.

– the awk command will check the last field of each line ($NF) and will print the original line ($0) only if
the last field contained a number smaller than 2

$ sort -k1,1 -k2,2n testBed.bed | mergeBed -i stdin -n -nms | awk '$NF < 2 {print $0}'
chr1 35 40 region4 1

1.7.8 Why does the maximum value in the heatmap not equal the maximum value
in the matrix?

Additional processing, such as outlier removal, is done on the matrix prior to plotting the heatmap. We’ve found this
beneficial in most cases. You can override this by manually setting --zMax and/or ‘--zMin, respectively.

1.7.9 The heatmap I generated looks very “coarse”, I would like a much more fine-
grained image.

• decrease the bin size when generating the matrix using computeMatrix

In Galaxy:

• go to “advanced options” –> “Length, in base pairs, of the non-overlapping bin for averaging the score
over the regions length” –> define a smaller value, e.g. 50 or 25 bp

• make sure that you used a sufficiently small bin size when calculating the bigWig file, though (if generated
with deepTools, you can check the option “bin size”)

58 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

1.7.10 How can I change the automatic labels of the clusters in a k-means clustered
heatmap?

Each cluster is treated exactly the same way as different groups of regions. Therefore, you can use the same option to
define the labels of the final heatmap:

In Galaxy: plotHeatmap –> “Advanced output options” –> “Labels for the regions plotted in the heatmap”.

If you indicated 2 clusters for k-means clustering, enter here: C1, C2, –> instead of the full default label (“cluster 1”),
the heatmap will be labeled with the abbreviations.

In the command line, use the --regionsLabel option to define the customized names for the regions.

1.7.11 How can I manually specify several groups of regions (instead of cluster-
ing)?

Simply specify multiple BED files (e.g., genes.bed, exons.bed and introns.bed). This works both in Galaxy and on the
command line.

1.7.12 What do I have to pay attention to when working with a draft version of a
genome?

If your genome isn’t included in our standard dataset then you’ll need the following:

1. Effective genome size - this is mostly needed for bamCoverage and bamCompare, see below for details

2. Reference genome sequence in 2bit format - this is needed for computeGCBias, see 2bit for details

1.7.13 How do I calculate the effective genome size for an organism that’s not in
your list?

At the moment we do not provide a tool for this purpose, so you’ll have to find a solution outside of deepTools for the
time being.

1.7. General FAQ 59

deepTools Documentation, Release 2.4.1

The “real” effective genome size is the part of the genome that is uniquely mappable. This means that the value will
depend on the genome properties (how many repetitive elements, quality of the assembly etc.) and the length of the
sequenced reads as 100 million 36-bp-reads might cover less than 100 million 100-bp-reads.

We currently have these options for you:

1. Use an GEM

2. Use faCount (only if you let reads be aligned non-uniquely, too!)

3. Use bamCoverage

4. Use genomeCoverageBed

Use GEM

There is a tool that promises to calculate the mappability for any genome given the read length (k-mer length): GEM-
Mappability Calculator . According to this reply here, you can calculate the effective genome size after running this
program by counting the numbers of ”!” which stands for uniquely mappable regions.

Use faCount

If you are using bowtie2, which reports multimappers (i.e., non-uniquely mapped reads) as a default setting, you
can use faCount from UCSC tools to report the total number of bases as well as the number of bases that are missing
from the genome assembly indicated by ‘N’. The effective genome size would then be the total number of base pairs
minus the total number of ‘N’. Here’s an example output of faCount on D. melanogaster genome version dm3:

$ UCSCtools/faCount dm3.fa
#seq len A C G T N cpg
chr2L 23011544 6699731 4811687 4815192 6684734 200 926264
chr2LHet 368872 90881 58504 57899 90588 71000 10958
chr2R 21146708 6007371 4576037 4574750 5988450 100 917644
chr2RHet 3288761 828553 537840 529242 826306 566820 99227
chr3L 24543557 7113242 5153576 5141498 7135141 100 995078
chr3LHet 2555491 725986 473888 479000 737434 139183 89647
chr3R 27905053 7979156 5995211 5980227 7950459 0 1186894
chr3RHet 2517507 678829 447155 446597 691725 253201 84175
chr4 1351857 430227 238155 242039 441336 100 43274
chrU 10049037 2511952 1672330 1672987 2510979 1680789 335241
chrUextra 29004656 7732998 5109465 5084891 7614402 3462900 986216
chrX 22422827 6409325 4742952 4748415 6432035 90100 959534
chrXHet 204112 61961 40017 41813 60321 0 754
chrYHet 347038 74566 45769 47582 74889 104232 8441
chrM 19517 8152 2003 1479 7883 0 132
total 168736537 47352930 33904589 33863611 47246682 6368725 6650479

In this example: Total no. bp = 168,736,537 Total no. ‘N’ = 6,368,725

Warning: This method only works if multimappers are randomly assigned to their possible locations (in such
cases the effective genome size is simply the number of non-N bases).

Use bamCoverage

If you have a sample where you expect the genome to be covered completely, e.g. from genome sequencing, a very
trivial solution is to use tools/bamCoverage with a bin size of 1 bp and the --outFileFormat option set to

60 Chapter 1. Contents:

http://algorithms.cnag.cat/wiki/Man:gem-mappability#Mappability.2Falignability
http://algorithms.cnag.cat/wiki/Man:gem-mappability#Mappability.2Falignability
https://groups.google.com/forum/#!topic/macs-announcement/-iIDkVwenn8

deepTools Documentation, Release 2.4.1

‘bedgraph’. You can then count the number of non-Zero bins (bases) which will indicate the mappable genome size
for this specific sample.

Use genomeCoverageBed

genomeCoverageBed from the BEDtools suite can be used to calculate the number of bases in the genome for
which 0 overlapping reads can be found. As described on the BEDtools website (go to genomeCov description), you
need:

• a file with the chromosome sizes of your sample’s organism

• a position-sorted BAM file

$ bedtools genomecov -ibam sortedBAMfile.bam -g genome.size

1.7.14 Where can I download the 2bit genome files required for computeGCBias?

The 2bit files of most genomes can be found here. Search for the .2bit ending. Otherwise, fasta files can be converted
to 2bit using the UCSC program faToTwoBit (available for different platforms from UCSC here).

deepTools Galaxy. code @ github.

1.8 Galaxy-related FAQ

• I’ve reached my quota - what can I do to save some space?
• Copying from one history to another doesn’t work for me - the data set simply doesn’t show up in the

target history!
• How can I use a published workflow?
• I would like to use one of your workflows - not in the deepTools Galaxy, but in the local Galaxy instance

provided by my institute. Is that possible?
• plotProfile says that one option will only work if “computeMatrix was run with –

missingDataAsZero”. How can I find out whether I ran computeMatrix that way?
• How can I have a look at the continuous read coverages from bigWig files? Which genome browser do

you recommend?
– IGV (recommended)
– UCSC

• What’s the best way to integrate the deepTools results with other downstream analyses (outside of
Galaxy)?

• How can I determine basic parameters of a BAM file, such as the number of reads, read length, duplication
rate and average DNA fragment length?

1.8.1 I’ve reached my quota - what can I do to save some space?

1. make sure that all the data sets you deleted are permanently eliminated from our disks: go to the history option
button and select “Purge deleted data sets”, then hit the “refresh” button on top of your history panel

2. download all data sets for which you’ve completed the analysis, then remove the data sets (click on the “x” and
then make sure they’re purged (see above)).

1.8. Galaxy-related FAQ 61

http://bedtools.readthedocs.org/en/latest/content/tools/genomecov.html
http://hgdownload.cse.ucsc.edu/gbdb/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

1.8.2 Copying from one history to another doesn’t work for me - the data set simply
doesn’t show up in the target history!

Once you’ve copied a data set from one history to another, check two things:

• do you see the destination history in your history panel, i.e. does the title of the current history panel match
the name of the destination history you selected in the main frame?

• hit the refresh button

1.8.3 How can I use a published workflow?

You must register if you want to use the workflows within deepTools Galaxy. (“User” –> “Register” - all you have to
supply is an email address). Make sure to read the Terms of Use, though!

You can find workflows that are public or specifically shared with you by another user via “Shared Data” –> “Published
Workflows”. Click on the triangle next to the workflow you’re interested in and select “import”.

A green box should appear, there you select “start using this workflow”, which should lead you to your own workflow
menu (that you can always access via the top menu “Workflow”). Here, you should now see a workflow labeled
“imported:”. If you want to use the workflow right away, click on the triangle and select “Run”. The workflow
should now be available within the Galaxy main data frame and should be waiting for your input.

62 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de

deepTools Documentation, Release 2.4.1

1.8.4 I would like to use one of your workflows - not in the deepTools Galaxy, but in
the local Galaxy instance provided by my institute. Is that possible?

Yes, it is possible. The only requirement is that your local Galaxy has a recent installation of deepTools.

Go to the workflows, click on the ones you’re interested in and go to “Download”. This will save the workflows into
.ga files on your computer. Now go to your local Galaxy installation and login. Go to the workflow menu and select
“import workflow” (top right hand corner of the page). Click on “Browse” and select the saved workflow. If you have
the same tool versions installed in your local Galaxy, these workflows should work right away.

1.8.5 plotProfile says that one option will only work if “computeMatrix was run
with –missingDataAsZero”. How can I find out whether I ran computeMatrix
that way?

Galaxy keeps track of everything you do. To see which options you chose to generate a specific data set, simply click
on the “info” button.

1.8.6 How can I have a look at the continuous read coverages from bigWig files?
Which genome browser do you recommend?

There are 2 popular genome browsers for visualizing continuous data: UCSC and IGV.

1.8. Galaxy-related FAQ 63

http://genome.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome-euro.ucsc.edu
http://www.broadinstitute.org/igv/

deepTools Documentation, Release 2.4.1

IGV (recommended)

We recommend downloading IGV, which is free for academic use. IGV itself needs an up-to-date Java installation
and a considerable amount of RAM. It’s usage is rather intuitive and the display can be easily customized. In addition,
you can download genome-wide annotation data that can be displayed together with your own data.

To display data in IGV, do the following:

1. Go to http://www.broadinstitute.org/igv/, register and download IGV

2. Unpack the IGV archive and change to the extracted IGV folder

3. Use the igv.bat (Windows), igv.sh (Linux) or igv.command (OSX) to start IGV (for more information
please read the included readme.txt file or the IGV documentation).

4. Choose the genome version of the file(s) you would like to visualize (e.g. dm3) THIS IS THE MOST IMPOR-
TANT STEP! IGV will not detect the genome version automatically, i.e. if you select mm9 but your file is based
on human data, it will still be displayed without an error message (but with the wrong positions, obviously!)

5. Go to your deepTools Galaxy server (http://deeptools.ie-freiburg.mpg.de/) and navigate to your data set of choice

6. Click on your data set so that you see its details like in the screenshot below (Keep in mind that not all datasets
can be visualized in IGV or UCSC. We recommend to use bigWig or BED files for visualization.)

Now click on “display with IGV local” to visualize your data set in IGV that should already be running on your
computer.

Note: “display with IGV Web current” can be used if you do not have an installed IGV. It will start an IGV web start
version. We do *not* recommend that option.

64 Chapter 1. Contents:

http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/igv/
http://deeptools.ie-freiburg.mpg.de/

deepTools Documentation, Release 2.4.1

Here’s a screenshot of a typical bigWig file display:

For more information, check out the IGV documentation.

UCSC

There is a direct link from within deepTools Galaxy to stream a data set to UCSC. You can find it in the data set tiles:
“display at UCSC”, like here:

Click on “main” and the UCSC browser should open within a new window, displaying the data set that you chose. The
default setting for bigWig files is the “dense” display that looks like a heatmap.

1.8. Galaxy-related FAQ 65

http://www.broadinstitute.org/software/igv/UserGuide

deepTools Documentation, Release 2.4.1

If you would like to display the continuous profile in a “valley-mountain” fashion like the one shown in the IGV
screenshot, go to the drop-down menu underneath your custom track and choose “full”.

UCSC has large amounts of public data that you can display which you can find by scrolling down the page, beyond
your custom track entry. For more information on how to use the UCSC Genome Browser, go here.

Known issues with UCSC

• chromosome naming: UCSC expects chromosome names to be indicated in the format “chr”Number, e.g. chr1.
If you mapped your reads to a non-UCSC-standard genome, chances are that chromosomes are labeled just with
their number. bigWig files generated from these BAM files will not be recognized by UCSC, i.e. you will see

66 Chapter 1. Contents:

https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html

deepTools Documentation, Release 2.4.1

the data set name, but no signal.

• no upload of bigWig files from your hard drive: to minimize the computational strains, UCSC relies on
streaming bigWig files (i.e. there’s no need to load the entire file at once, the browser will always just load the
data for the specific region a user is looking at).

1.8.7 What’s the best way to integrate the deepTools results with other downstream
analyses (outside of Galaxy)?

You can save all the data tables underlying every image produced by deepTools, i.e. if you would like to plot the
average profiles in a different way, you could download the corresponding data (after ticking the relevant option under
“advanced output options”) and import them into R, Excel, GraphPadPrism etc.

The descriptions of the tools within Galaxy will also contain details on how to save the data and what sort of format
to expect.

1.8.8 How can I determine basic parameters of a BAM file, such as the number of
reads, read length, duplication rate and average DNA fragment length?

If you downloaded the BAM file from a public repository, chances are that those characteristics are in fact noted there.

If that’s not the case, we recommend to have a look at the tool FastQC, which will return all of the
above points (except the fragment size). The fragment size distribution can be obtained using the deepTools’
tools/bamPEFragmentSize (since deepTools 2.0).

deepTools Galaxy. code @ github.

1.9 Glossary of NGS terms

Like most specialized fields, next-generation sequencing has inspired many an acronyms. We are trying to keep track
of those Abbreviations that we heavily use. Do make us aware if something is unclear: deeptools@googlegroups.com

• Abbreviations
• NGS and generic terminology

– bin
– Input
– read

• File Formats
– 2bit
– BAM
– BED
– bedGraph
– bigWig
– FASTA
– FASTQ
– SAM

* SAM header section
* SAM alignment section

1.9. Glossary of NGS terms 67

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
mailto:deeptools@googlegroups.com

deepTools Documentation, Release 2.4.1

1.9.1 Abbreviations

Reference genomes are usually referred to by their abbreviations, such as:

• hg19 = human genome, version 19

• mm9 = Mus musculus genome, version 9

• dm3 = Drosophila melanogaster, version 3

• ce10 = Caenorhabditis elegans, version 10

For a more comprehensive list of available reference genomes and their abbreviations, see the UCSC data base.

Acronym full phrase Synonyms/Explanation
<ANYTHING>-
seq

-sequencing indicates that an experiment was completed by DNA sequencing using
NGS

ChIP-seq chromatin
immunoprecipitation
sequencing

NGS technique for detecting transcription factor binding sites and
histone modifications (see entry Input for more information)

DNase deoxyribonuclease I DNase I digestion is used to determine active (“open”) chromatin
regions

HTS high-throughput
sequencing

next-generation sequencing, massive parallel short read sequencing,
deep sequencing

MNase micrococcal nuclease MNase digestion is used to determine sites with nucleosomes
NGS next-generation

sequencing
high-throughput (DNA) sequencing, massive parallel short read
sequencing, deep sequencing

RPGC reads per genomic
content

normalize reads to 1x sequencing depth, sequencing depth is defined as:
(mapped reads x fragment length) / effective genome size

RPKM reads per kilobase per
million reads

normalize read numbers: RPKM (per bin) = reads per bin / (mapped
reads (in millions) x bin length (kb))

For a review of popular *-seq applications, see Zentner and Henikoff.

1.9.2 NGS and generic terminology

The following are terms that may be new to some:

bin

• synonyms: window, region

• A ‘bin’ is a subset of a larger grouping. Many calculations calculation are performed by first dividing the
genome into small regions (bins), on which the calculations are actually performed.

Input

• Control experiment typically done for ChIP-seq experiments

• While ChIP-seq relies on antibodies to enrich for DNA fragments bound to a certain protein, the input sample
should be processed exactly the same way, excluding the antibody. This allows one to account for biases
introduced by sample handling and the general chromatin structure of the cells

68 Chapter 1. Contents:

http://hgdownload.soe.ucsc.edu/downloads.html
http://genomebiology.com/2012/13/10/250

deepTools Documentation, Release 2.4.1

read

• synonym: tag

• This term refers to the piece of DNA that is sequenced (“read”) by the sequencers. We try to differentiate
between “read” and “DNA fragment” as the fragments that are put into the sequencer tend to be in the range of
200-1000 bases, of which only the first 50 to 300 bases are typically sequenced. Most of the deepTools will not
only take these reads into account, but also extend them to match the original DNA fragment size. (The original
size will either be given by you or, if you used paired-end sequencing, be calculated from the distance between
the two read mates).

1.9.3 File Formats

Data obtained from next-generation sequencing data must be processed several times. Most of the processing steps
are aimed at extracting only that information needed for a specific down-stream analysis, with redundant entries often
discarded. Therefore, specific data formats are often associated with different steps of a data processing pipeline.

Here, we just want to give very brief key descriptions of the file, for elaborate information we will link to external
websites. Be aware, that the file name sorting here is alphabetical, not according to their usage within an analysis
pipeline that is depicted here:

Follow the links for more information on the different tool collections mentioned in the figure:

samtools | UCSCtools | BEDtools |

1.9. Glossary of NGS terms 69

http://www.htslib.org/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://bedtools.readthedocs.org/en/latest/

deepTools Documentation, Release 2.4.1

2bit

• compressed, binary version of genome sequences that are often stored in FASTA

• most genomes in 2bit format can be found at UCSC

• FASTA files can be converted to 2bit using the UCSC programm faToTwoBit, which is available for different
platforms at UCSC

• more information can be found here

BAM

• typical file extension: .bam

• binary file format (complement to SAM)

• contains information about sequenced reads (typically) after alignment to a reference genome

• each line = 1 mapped read, with information about:

– its mapping quality (how likelihood that the reported alignment is correct)

– its sequencing quality (the probability that each base is correct)

– its sequence

– its location in the genome

– etc.

• highly recommended format for storing data

• to make a BAM file human-readable, one can, for example, use the program samtools view

• for more information, see below for the definition of SAM files

BED

• typical file extension: .bed

• text file

• used for genomic intervals, e.g. genes, peak regions etc.

• the format can be found at UCSC

• for deepTools, the first 3 columns are important: chromosome, start position of the region, end position of the
genome

• do not confuse it with the bedGraph format (although they are related)

• example lines from a BED file of mouse genes (note that the start position is 0-based, the end-position 1-based,
following UCSC conventions for BED files):

chr1 3204562 3661579 NM_001011874 Xkr4 -
chr1 4481008 4486494 NM_011441 Sox17 -
chr1 4763278 4775807 NM_001177658 Mrpl15 -
chr1 4797973 4836816 NM_008866 Lypla1 +

70 Chapter 1. Contents:

http://hgdownload.cse.ucsc.edu/gbdb/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://genome.ucsc.edu/FAQ/FAQformat.html#format7
http://genome.ucsc.edu/FAQ/FAQformat.html#format1

deepTools Documentation, Release 2.4.1

bedGraph

• typical file extension: .bg, .bedGraph

• text file

• similar to BED file (not the same!), it can only contain 4 columns and the 4th column must be a score

• again, read the UCSC description for more details

• 4 example lines from a bedGraph file (like BED files following the UCSC convention, the start position is
0-based, the end-position 1-based in bedGraph files):

chr1 10 20 1.5
chr1 20 30 1.7
chr1 30 40 2.0
chr1 40 50 1.8

bigWig

• typical file extension: .bw, .bigwig

• binary version of a bedGraph or wig file

• contains coordinates for an interval and an associated score

• the score can be anything, e.g. an average read coverage

• UCSC description for more details

FASTA

• typical file extension: .fasta

• text file, often gzipped (.fasta.gz)

• very simple format for DNA/RNA or protein sequences, this can be anything from small pieces of DNA or
proteins to an entire genome (most likely, you will get the genome sequence of your organism of interest in fasta
format)

• see the 2bit file format entry for a compressed alternative

• example from wikipedia showing exactly one sequence:

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV
EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG
LLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL
GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX
IENY

FASTQ

• typical file extension: .fastq, .fq

• text file, often gzipped (–> .fastq.gz)

• contains raw read information – 4 lines per read:

– read ID

1.9. Glossary of NGS terms 71

https://genome.ucsc.edu/FAQ/FAQformat.html#format1.8
https://genome.ucsc.edu/FAQ/FAQformat.html#format6.1
http://en.wikipedia.org/wiki/FASTA_format

deepTools Documentation, Release 2.4.1

– base calls

– additional information or empty line

– sequencing quality measures - 1 per base call

• note that there is no information about where in the genome the read originated from

• example from the wikipedia page, which contains further information:

@read001 # read ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT # read sequence
+ # usually empty line
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 # ASCII-encoded quality scores

• if you need to find out what type of ASCII-encoding your .fastq file contains, you can simply run FastQC – its
summery file will tell you

SAM

• typical file extension: .sam

• usually the result of an alignment of sequenced reads to a reference genome

• contains a short header section (entries are marked by @ signs) and an alignment section where each line
corresponds to a single read (thus, there can be millions of these lines)

SAM header section

• tab-delimited lines, beginning with @, followed by tag:value pairs

• tag = two-letter string that defines the content and the format of value

72 Chapter 1. Contents:

http://en.wikipedia.org/wiki/Fastq
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

deepTools Documentation, Release 2.4.1

SAM alignment section

• each line contains information about its mapping quality, its sequence, its location in the genome etc.

r001 163 chr1 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 chr1 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *

• the flag in the second field contains the answer to several yes/no assessments that are encoded in a single
number

• for more details on the flag, see this thorough explanation or this more technical explanation

• the CIGAR string in the 6th field represents the types of operations that were needed in order to align the read
to the specific genome location:

– insertion

– deletion (small deletions denoted with D, bigger deletions, e.g., for spliced reads, denoted with N)

– clipping (deletion at the ends of a read)

Warning: Although the SAM/BAM format is rather meticulously defined and documented, whether an alignment
program will produce a SAM/BAM file that adheres to these principles is completely up to the programmer. The
mapping score, CIGAR string, and particularly, all optional flags (fields >11) are often very differently defined
depending on the program. If you plan on filtering your data based on any of these criteria, make sure you know
exactly how these entries were calculated and set!

deepTools Galaxy. code @ github.

1.10 deepTools API

deepTools consists of several command line and Galaxy wrappers for summarizing the information of Next Generation
Sequencing data that can be mapped to a reference genome. Through the API, the engine powering the deepTools
commands can be used for other purposes as well.

Our deepTools API example explains step-by-step how to make use of some deepTools modules to achieve analyses
outside the scope of the deepTools suite such as counting reads for certain genome regions and computing the FRiP
score.

1.10.1 deepTools API example

The following is a short overview of the most useful methods and classes from deepTools. Complete information can
be found in the following links: genindex and modindex

Finding read coverage over a region

With deepTools, the read coverage over multiple genomic regions and multiple files can be computed quite quickly
using multiple processors. First, we start with a simple example that is later expanded upon to demonstrate the use of
multipe processors. In this example we compute the coverage of reads over a small region for bins of 50bp. For this
we need the deeptools.countReadsPerBin class.

import deeptools.countReadsPerBin

1.10. deepTools API 73

http://ppotato.wordpress.com/2010/08/25/samtool-bitwise-flag-paired-reads/
http://blog.nextgenetics.net/?e=18
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

We also need a BAM file containing the aligned reads. The BAM file must be indexed to allow quick access to reads
falling into the regions of interest.

bam_file = "file.bam"

Now, the countReadsPerBin object can be initialized. The first argument to the constructor is a list of BAM files,
which in this case is just one file. We are going to use a binLength of 50 bases, with subsequent bins adjacent
(i.e., the stepSize between bins is also 50 bases). Overlapping bin coverages can be used by setting a stepSize
smaller than binLength.

cr = countReadsPerBin.CountReadsPerBin([bam_file], binLength=50, stepSize=50)

Now, we can compute the coverage over a region in chromosome 2 from position 0 to 1000.

cr.count_reads_in_region('chr2L', 0, 1000)

array([[2.],
[3.],
[1.],
[2.],
[3.],
[2.],
[4.],
[3.],
[2.],
[3.],
[4.],
[6.],
[4.],
[2.],
[2.],
[1.]])

The result is a numpy array with one row per bin and one column per bam file. Since only one BAM file was used,
there is only one column.

Filtering reads

If reads should be filtered, the relevant options simply need to be passed to the constructor. In the following
code, the reads are filtered such that only those with a mapping quality of at least 20 and not aligned to the re-
verse strand are kept (samFlag_exclude=16, where 16 is the value for reverse reads, see the [SAM Flag Calcu-
lator](http://broadinstitute.github.io/picard/explain-flags.html) for more info). Furthermore, duplicated reads are ig-
nored.

cr = countReadsPerBin.CountReadsPerBin([bam_file], binLength=50, stepSize=50,
minMappingQuality=20,
samFlag_exclude=16,
ignoreDuplicates=True
)

cr.count_reads_in_region('chr2L', 1000000, 1001000)

array([[1.],
[1.],
[0.],
[0.],
[0.],
[0.],
[2.],

74 Chapter 1. Contents:

http://broadinstitute.github.io/picard/explain-flags.html

deepTools Documentation, Release 2.4.1

[3.],
[1.],
[0.],
[1.],
[2.],
[0.],
[0.],
[1.],
[2.],
[1.],
[0.],
[0.],
[0.]])

Sampling the genome

Instead of adjacent bins, as in the previous cases, a genome can simply be sampled. This is useful to estimate some
values, like depth of sequencing, without having to look at the complete genome. In the following example, 10,000
positions of size 1 base are going to be queried from three bam files to compute the average depth of sequencing. For
this, we set the numberOfSamples parameter in the object constructor. The skipZeros parameter is added to exclude
regions lacking reads in all BAM files. The run() method is used instead of count_reads_in_region.

cr = countReadsPerBin.CountReadsPerBin([bam_file1, bam_file2, bam_file3],
binLength=1, numberOfSamples=10000,
numberOfProcessors=10,
skipZeros=True)

sequencing_depth = cr.run()
print sequencing_depth.mean(axis=0)

[1.98923924 2.43743744 22.90102603]

The run() method splits the computation over 10 processors and collates the results. When the parameter numberOf-
Samples is used, the regions selected for the computation of the coverage are not random. Instead, the genome is
split into ‘number-of-samples’ equal parts and the start of each part is queried for its coverage. You can also compute
coverage over selected regions by inputting a BED file.

Now it is possible to make some diagnostic plots from the results:

fig, axs = plt.subplots(1, 2, figsize=(15,5))
plot coverage
for col in res.T:

axs[0].plot(np.bincount(col.astype(int)).astype(float)/total_sites)
csum = np.bincount(col.astype(int))[::-1].cumsum()
axs[1].plot(csum.astype(float)[::-1] / csum.max())

axs[0].set_xlabel('coverage')
axs[0].set_ylabel('fraction of bases sampled')
plot cumulative coverage

axs[1].set_xlabel('coverage')
axs[1].set_ylabel('fraction of bases sampled >= coverage')

1.10. deepTools API 75

deepTools Documentation, Release 2.4.1

Computing the FRiP score

The FRiP score is defined as the fraction of reads that fall into a peak and is often used as a measure of ChIP-seq
quality. For this example, we need a BED file containing the peak regions. Such files are usually computed using a
peak caller. Also, two bam files are going to be used, corresponding to two biological replicates.

bed_file = open("peaks.bed", 'r')
cr = countReadsPerBin.CountReadsPerBin([bam_file1, bam_file2],

bedFile=bed_file,
numberOfProcessors=10)

reads_at_peaks = cr.run()
print reads_at_peaks

array([[322., 248.],
[231., 182.],
[112., 422.],
...,
[120., 76.],
[235., 341.],
[246., 265.]])

The result is a numpy array with a row for each peak region and a column for each BAM file.

reads_at_peaks.shape

(6295, 2)

Now, the total number of reads per peaks per bam file is computed:

total = reads_at_peaks.sum(axis=0)

Next, we need to find the total number of mapped reads in each of the bam files. For this we use the pysam module.

import pysam
bam1 = pysam.AlignmentFile(bam_file1)
bam2 = pysam.AlignmentFile(bam_file2)

Now, bam1.mapped and bam2.mapped contain the total number of mapped reads in each of the bam files, respectively.

Finally, we can compute the FRiP score:

frip1 = float(total[0]) / bam1.mapped
frip2 = float(total[1]) / bam2.mapped
print frip1, frip2

76 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

0.170030741997, 0.216740390353

Using mapReduce to sample paired-end fragment lengths

deepTools internally uses a map-reduce strategy, in which a computation is split into smaller parts that are sent to
different processors. The output from the different processors is subsequently collated. The following example is
based on the code available for bamPEFragmentSize.py

Here, we retrieve the reads from a BAM file and collect the fragment length. Reads are retrieved using pysam, and
the read object returned contains the template_length attribute, which is the number of bases from the leftmost to the
rightmost mapped base in the read pair.

First, we will create a function that can collect fragment lengths over a genomic position from a BAM file. As we will
later call this function using mapReduce, the function accepts only one argument, namely a tuple with the parameters:
chromosome name, start position, end position, and BAM file name.

import pysam
import numpy as np
def get_fragment_length(args):

chrom, start, end, bam_file_name = args
bam = pysam.Aligmementfile(bam_file_name)
f_lens_list = []
for fetch_start in range(start, end, 1e6):

simply get the reads over a region of 10000 bases
fetch_end = min(end, start + 10000)

f_lens_list.append(np.array([abs(read.template_length)
for read in bam.fetch(chrom, fetch_start, fetch_end)
if read.is_proper_pair and read.is_read1]))

concatenate all results
return np.concatenate(fragment_lengths)

Now, we can use mapReduce to call this function and compute fragment lengths over the whole genome. mapReduce
needs to know the chromosome sizes, which can be easily retrieved from the BAM file. Furthermore, it needs to know
the size of the region(s) sent to each processor. For this example, a region of 10 million bases is sent to each processor
using the genomeChunkLength parameter. In other words, each processor executes the same get_fragment_length
function to collect data over different 10 million base regions. The arguments to mapReduce are the list of arguments
sent to the function, besides the first obligatory three (chrom start, end). In this case only one extra argument is
passed to the function, the BAM file name. The next two positional arguments are the name of the function to call
(get_fragment_length) and the chromosome sizes.

import deeptools.mapReduce
bam = pysam.Aligmentfile(bamFile)
chroms_sizes = zip(bam.references, bam.lengths)

result = mapReduce.mapReduce((bam_file_name,),
get_fragment_length
chrom_sizes,
genomeChunkLength=10000000,
numberOfProcessors=20,
verbose=True)

fragment_lengths = np.concatenate(result)

print "mean fragment length {}".format(fragment_lengths.mean()"
print "median fragment length {}".format(np.median(fragment_lengths)"

1.10. deepTools API 77

deepTools Documentation, Release 2.4.1

0.170030741997, 0.216740390353

Indices and tables

• genindex

• modindex

• search

deepTools Galaxy. code @ github.

1.10.2 deeptools package modules

deeptools.SES_scaleFactor module

class deeptools.SES_scaleFactor.Tester
Bases: object

deeptools.SES_scaleFactor.estimateScaleFactor(bamFilesList, binLength, numberOf-
Samples, normalizationLength,
avg_method=’median’, blackListFile-
Name=None, numberOfProcessors=1,
verbose=False, chrsToSkip=[])

Subdivides the genome into chunks to be analyzed in parallel using several processors. The code handles the
creation of workers that compute fragment counts (coverage) for different regions and then collect and integrates
the results.

Parameters bamFilesList : list

list of bam files to normalize

binLength : int

the window size in bp, where reads are going to be counted.

numberOfSamples : int

number of sites to sample from the genome. For more info see the documentation of
the CountReadsPerBin class

normalizationLength : int

length, in bp, to normalize the data. For a value of 1, on average 1 read per base pair is
found

avg_method : str

defines how the different values are to be summarized. The options are ‘mean’ and
‘median’

chrsToSkip : list

name of the chromosomes to be excluded from the scale estimation. Usually the chrX
is included.

blackListFileName : str

BED file containing blacklisted regions

Returns dict

78 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

Dictionary with the following keys:: ‘size_factors’ ‘size_factors_based_on_mapped_reads’
‘size_factors_SES’ ‘size_factors_based_on_mean’ ‘size_factors_based_on_median’
‘mean’ ‘meanSES’ ‘median’ ‘reads_per_bin’ ‘std’ ‘sites_sampled’

Examples

>>> test = Tester()
>>> bin_length = 50
>>> num_samples = 4
>>> _dict = estimateScaleFactor([test.bamFile1, test.bamFile2], bin_length, num_samples, 1)
>>> _dict['size_factors']
array([1. , 0.5])
>>> _dict['size_factors_based_on_mean']
array([1. , 0.5])

deeptools.bamHandler module

deeptools.bamHandler.openBam(bamFile)

deeptools.correctReadCounts module

deeptools.correctReadCounts.computeCorrectedReadcounts(tileCoverage, args)
This function is called by the writeBedGraph workers for every tile in the genome that is considered

It computes a pvalue based on an expected lambda comming from the correction of treatment when the input is
considered.

deeptools.correctReadCounts.computeLambda(tileCoverage, args)
This function is called by the writeBedGraph workers for every tile in the genome that is considered

deeptools.correctReadCounts.computePvalue(tileCoverage, args)
This function is called by the writeBedGraph workers for every tile in the genome that is considered

It computes a pvalue based on an expected lambda comming from the correction of treatment when the input is
considered.

deeptools.correctReadCounts.controlLambda(tileCoverage, args)

deeptools.correctReadCounts.correctReadCounts(bamFilesList, binLength, numberOf-
Samples, defaultFragmentLength,
outFileName, outFileFormat, out-
FileNameCorr=None, region=None,
extendPairedEnds=True, numberOf-
Processors=1, Nsigmas=2, maxSignal-
Ratio=10, blackListFileName=None,
verbose=False)

deeptools.correlation module

class deeptools.correlation.Correlation(matrix_file, corr_method=None, labels=None,
remove_outliers=False, skip_zeros=False,
log1p=False)

class to work with matrices having sample data to compute correlations, plot them and make scatter plots

1.10. deepTools API 79

deepTools Documentation, Release 2.4.1

compute_correlation()
computes spearman or pearson correlation for the samples in the matrix

The matrix should contain the values of each sample per column that’s why the transpose is used.

>>> matrix = np.array([[1, 2, 3, np.nan],
... [1, 2, 3, 4],
... [6, 4, 3, 1]]).T
>>> np.savez_compressed("/tmp/test_matrix.npz", matrix=matrix, labels=['a', 'b', 'c'])

>>> c = Correlation("/tmp/test_matrix.npz", corr_method='pearson')

the results should be as in R

>>> c.compute_correlation().filled(np.nan)
array([[1. , 1. , -0.98198051],

[1. , 1. , -0.98198051],
[-0.98198051, -0.98198051, 1.]])

>>> c.corr_method = 'spearman'
>>> c.corr_matrix = None
>>> c.compute_correlation()
array([[1., 1., -1.],

[1., 1., -1.],
[-1., -1., 1.]])

static get_outlier_indices(data, max_deviation=200)
The method is based on the median absolute deviation. See Boris Iglewicz and David Hoaglin (1993),
“Volume 16: How to Detect and Handle Outliers”, The ASQC Basic References in Quality Control: Sta-
tistical Techniques, Edward F. Mykytka, Ph.D., Editor.

returns the list, without the outliers

The max_deviation=200 is like selecting a z-score larger than 200, just that it is based on the median and
the median absolute deviation instead of the mean and the standard deviation.

load_matrix(matrix_file)
loads a matrix file saved using the numpy savez method. Two keys are expected: ‘matrix’ and ‘labels’.
The matrix should contain one sample per row

plot_correlation(plot_fiilename, plot_title=’‘, vmax=None, vmin=None, colormap=’jet’, im-
age_format=None, plot_numbers=False)

plots a correlation using a symmetric heatmap

plot_pca(plot_filename, plot_title=’‘, image_format=None, log1p=False)
Plot the PCA of a matrix

plot_scatter(plot_fiilename, plot_title=’‘, image_format=None, log1p=False)
Plot the scatter plots of a matrix in which each row is a sample

remove_outliers(verbose=True)
get the outliers per column using the median absolute deviation method

Returns the filtered matrix

remove_rows_of_zeros()

save_corr_matrix(file_handle)
saves the correlation matrix

80 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

deeptools.correlation_heatmap module

deeptools.correlation_heatmap.plot_correlation(corr_matrix, labels, plotFileName,
vmax=None, vmin=None, col-
ormap=’jet’, image_format=None,
plot_numbers=False, plot_title=’‘)

deeptools.countReadsPerBin module

class deeptools.countReadsPerBin.CountReadsPerBin(bamFilesList, binLength=50, num-
berOfSamples=None, numberOf-
Processors=1, verbose=False,
region=None, bedFile=None,
extendReads=False, blackList-
FileName=None, minMap-
pingQuality=None, ignoreDupli-
cates=False, chrsToSkip=[], step-
Size=None, center_read=False,
samFlag_include=None, sam-
Flag_exclude=None, ze-
rosToNans=False, smooth-
Length=0, minFragmentLength=0,
maxFragmentLength=0,
out_file_for_raw_data=None)

Bases: object

Collects coverage over multiple bam files using multiprocessing

This function collects read counts (coverage) from several bam files and returns an numpy array with the results.
This class uses multiprocessing to compute the coverage.

Parameters bamFilesList : list

List containing the names of indexed bam files. E.g. [’file1.bam’, ‘file2.bam’]

binLength : int

Length of the window/bin. This value is overruled by bedFile if present.

numberOfSamples : int

Total number of samples. The genome is divided into numberOfSamples, each with
a window/bin length equal to binLength. This value is overruled by stepSize in
case such value is present and by bedFile in which case the number of samples and
bins are defined in the bed file

numberOfProcessors : int

Number of processors to use. Default is 4

verbose : bool

Output messages. Default: False

region : str

Region to limit the computation in the form chrom:start:end.

bedFile : file_handle

1.10. deepTools API 81

deepTools Documentation, Release 2.4.1

File handle of a bed file containing the regions for which to compute the coverage. This
option overrules binLength, numberOfSamples and stepSize.

blackListFileName : str

A string containing a BED file with blacklist regions.

extendReads : bool, int

Whether coverage should be computed for the extended read length (i.e. the region
covered by the two mates or the regions expected to be covered by single-reads). If
the value is ‘int’, then then this is interpreted as the fragment length to extend reads
that are not paired. For Illumina reads, usual values are around 300. This value can
be determined using the peak caller MACS2 or can be approximated by the fragment
lengths computed when preparing the library for sequencing. If the value is of the
variable is true and not value is given, the fragment size is sampled from the library but
only if the library is paired-end. Default: False

minMappingQuality : int

Reads of a mapping quality less than the give value are not considered. Default: None

ignoreDuplicates : bool

Whether read duplicates (same start, end position. If paired-end, same start-end for
mates) are to be excluded. Default: false

chrToSkip: list

List with names of chromosomes that do not want to be included in the coverage com-
putation. This is useful to remove unwanted chromosomes (e.g. ‘random’ or ‘Het’).

stepSize : int

the positions for which the coverage is computed are defined as follows:
range(start, end, stepSize). Thus, a stepSize of 1, will compute the cov-
erage at each base pair. If the stepSize is equal to the binLength then the coverage is
computed for consecutive bins. If seepSize is smaller than the binLength, then teh bins
will overlap.

center_read : bool

Determines if reads should be centered with respect to the fragment length.

samFlag_include : int

Extracts only those reads having the SAM flag. For example, to get only reads that are
the first mates a samFlag of 64 could be used. Similarly, the samFlag_include can be
used to select only reads mapping on the reverse strand or to get only properly paired
reads.

samFlag_exclude : int

Removes reads that match the SAM flag. For example to get all reads that map to the
forward strand a samFlag_exlude 16 should be used. Which translates into exclude all
reads that map to the reverse strand.

zerosToNans : bool

If true, zero values encountered are transformed to Nans. Default false.

minFragmentLength : int

If greater than 0, fragments below this size are excluded.

82 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

maxFragmentLength : int

If greater than 0, fragments above this size are excluded.

out_file_for_raw_data : str

File name to save the raw counts computed

Returns numpy array

Each row correspond to each bin/bed region and each column correspond to each of the
bamFiles.

Examples

The test data contains reads for 200 bp.

>>> test = Tester()

The transpose function is used to get a nicer looking output. The first line corresponds to the number of reads
per bin in bam file 1

>>> c = CountReadsPerBin([test.bamFile1, test.bamFile2], 50, 4)
>>> np.transpose(c.run())
array([[0., 0., 1., 1.],

[0., 1., 1., 2.]])

count_reads_in_region(chrom, start, end, bed_regions_list=None)
Counts the reads in each bam file at each ‘stepSize’ position within the interval (start, end) for a window
or bin of size binLength.

The stepSize controls the distance between bins. For example, a step size of 20 and a bin size of 20 will
create bins next to each other. If the step size is smaller than the bin size the bins will overlap.

If a list of bedRegions is given, then the number of reads that overlaps with each region is counted.

Parameters chrom : str

Chrom name

start : int

start coordinate

end : int

end coordinate

bed_regions_list: list

List of list of tuples of the form (start, end) corresponding to bed regions to be processed.
If not bed file was passed to the object constructor then this list is empty.

Returns numpy array

The result is a numpy array that as rows each bin and as columns each bam file.

Examples

Initialize some useful values

1.10. deepTools API 83

deepTools Documentation, Release 2.4.1

>>> test = Tester()
>>> c = CountReadsPerBin([test.bamFile1, test.bamFile2], 25, 0, stepSize=50)

The transpose is used to get better looking numbers. The first line corresponds to the number of reads per
bin in the first bamfile.

>>> _array, __ = c.count_reads_in_region(test.chrom, 0, 200)
>>> _array
array([[0., 0.],

[0., 1.],
[1., 1.],
[1., 2.]])

getReadLength(read)

getSmoothRange(tileIndex, tileSize, smoothRange, maxPosition)
Given a tile index position and a tile size (length), return the a new indices over a larger range, called the
smoothRange. This region is centered in the tileIndex an spans on both sizes to cover the smoothRange.
The smoothRange is trimmed in case it is less than zero or greater than maxPosition

---------------|==================|------------------
tileStart

|--------------------------------------|
| <-- smoothRange --> |
|

tileStart - (smoothRange-tileSize)/2

Test for a smooth range that spans 3 tiles.

Examples

>>> c = CountReadsPerBin([], 1, 1, 1, 0)
>>> c.getSmoothRange(5, 1, 3, 10)
(4, 7)

Test smooth range truncated on start.

>>> c.getSmoothRange(0, 10, 30, 200)
(0, 2)

Test smooth range truncated on start.

>>> c.getSmoothRange(1, 10, 30, 4)
(0, 3)

Test smooth range truncated on end.

>>> c.getSmoothRange(5, 1, 3, 5)
(4, 5)

Test smooth range not multiple of tileSize.

>>> c.getSmoothRange(5, 10, 24, 10)
(4, 6)

get_coverage_of_region(bamHandle, chrom, regions, fragmentFromRead_func=None)
Returns a numpy array that corresponds to the number of reads that overlap with each tile.

84 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

>>> test = Tester()
>>> import pysam
>>> c = CountReadsPerBin([], stepSize=1, extendReads=300)

For this case the reads are length 36. The number of overlapping read fragments is 4 and 5 for the positions
tested.

>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile_PE), 'chr2',
... [(5000833, 5000834), (5000834, 5000835)])
array([4., 5.])

In the following example a paired read is extended to the fragment length which is 100 The first mate starts
at 5000000 and the second at 5000064. Each mate is extended to the fragment length independently At
position 500090-500100 one fragment of length 100 overlap, and after position 5000101 there should be
zero reads.

>>> c.zerosToNans = True
>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile_PE), 'chr2',
... [(5000090, 5000100), (5000100, 5000110)])
array([1., nan])

In the following case the reads length is 50. Reads are not extended.

>>> c.extendReads=False
>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile2), '3R', [(148, 150), (150, 152), (152, 154)])
array([1., 2., 2.])

get_fragment_from_read(read)
Get read start and end position of a read. If given, the reads are extended as follows: If reads are paired
end, each read mate is extended to match the fragment length, otherwise, a default fragment length is used.
If reads are split (give by the CIGAR string) then the multiple positions of the read are returned. When
reads are extended the cigar information is skipped.

Parameters read : pysam read object

Returns list of tuples

[(fragment start, fragment end)]

>>> test = Tester()

>>> c = CountReadsPerBin([], 1, 1, 200, extendReads=True)

>>> c.defaultFragmentLength=100

>>> c.get_fragment_from_read(test.getRead("paired-forward"))

[(5000000, 5000100)]

>>> c.get_fragment_from_read(test.getRead("paired-reverse"))

[(5000000, 5000100)]

>>> c.defaultFragmentLength = 200

>>> c.get_fragment_from_read(test.getRead("single-forward"))

1.10. deepTools API 85

deepTools Documentation, Release 2.4.1

[(5001491, 5001691)]

>>> c.get_fragment_from_read(test.getRead("single-reverse"))

[(5001536, 5001736)]

>>> c.defaultFragmentLength = 'read length'

>>> c.get_fragment_from_read(test.getRead("single-forward"))

[(5001491, 5001527)]

>>> c.defaultFragmentLength = 'read length'

>>> c.extendReads = False

>>> c.get_fragment_from_read(test.getRead("paired-forward"))

[(5000000, 5000036)]

Tests for read centering.

>>> c = CountReadsPerBin([], 1, 1, 200, extendReads=True, center_read=True)

>>> c.defaultFragmentLength = 100

>>> assert(c.get_fragment_from_read(test.getRead("paired-forward")) == [(5000032, 5000068)])

>>> c.defaultFragmentLength = 200

>>> assert(c.get_fragment_from_read(test.getRead("single-reverse")) == [(5001618, 5001654)])

static is_proper_pair(read, maxPairedFragmentLength)
Checks if a read is proper pair meaning that both mates are facing each other and are in the same chro-
mosome and are not to far away. The sam flag for proper pair can not always be trusted. Note that if the
fragment size is > maxPairedFragmentLength (~2kb usually) that False will be returned. :return: bool

>>> import pysam
>>> import os
>>> from deeptools.countReadsPerBin import CountReadsPerBin as cr
>>> root = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"
>>> bam = pysam.AlignmentFile("{}/test_proper_pair_filtering.bam".format(root))
>>> iter = bam.fetch()
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "keep" read
True
>>> cr.is_proper_pair(read, 200) # "keep" read, but maxPairedFragmentLength is too short
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "improper pair"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "mismatch chr"
False

86 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "same orientation1"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "same orientation2"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "rev first"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "rev first OK"
True
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "for first"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "for first"
True

run(allArgs=None)

class deeptools.countReadsPerBin.Tester
Bases: object

getRead(readType)
prepare arguments for test

deeptools.countReadsPerBin.countReadsInRegions_wrapper(args)
Passes the arguments to countReadsInRegions_worker. This is a step required given the constrains from the
multiprocessing module. The args var, contains as first element the ‘self’ value from the countReadsPerBin
object

deeptools.countReadsPerBin.remove_row_of_zeros(matrix)

deeptools.getFragmentAndReadSize module

deeptools.getFragmentAndReadSize.getFragmentLength_worker(chrom, start, end, bam-
File, distanceBetween-
Bins)

Queries the reads at the given region for the distance between reads and the read length

Parameters chrom : str

chromosome name

start : int

region start

end : int

region end

bamFile : str

BAM file name

distanceBetweenBins : int

the number of bases at the end of each bin to ignore

Returns np.array

1.10. deepTools API 87

deepTools Documentation, Release 2.4.1

an np.array, where first column is fragment length, the second is for read length

deeptools.getFragmentAndReadSize.getFragmentLength_wrapper(args)

deeptools.getFragmentAndReadSize.get_read_and_fragment_length(bamFile, re-
turn_lengths=False,
blackListFile-
Name=None,
binSize=50000,
distanceBetween-
Bins=1000000,
numberOfPro-
cessors=None,
verbose=False)

Estimates the fragment length and read length through sampling

Parameters bamFile : str

BAM file name

return_lengths : bool

numberOfProcessors : int

verbose : bool

binSize : int

distanceBetweenBins : int

Returns d : dict

tuple of two dictionaries, one for the fragment length and the other for the read length.
The dictionaries summarise the mean, median etc. values

deeptools.getRatio module

deeptools.getRatio.compute_ratio(value1, value2, args)

deeptools.getRatio.getRatio(tileCoverage, args)
The mapreduce method calls this function for each tile. The parameters (args) are fixed in the main method.

>>> funcArgs= {'valueType': 'ratio', 'scaleFactors': (1,1), 'pseudocount': 1}
>>> getRatio([9, 19], funcArgs)
0.5
>>> getRatio([0, 0], funcArgs)
1.0
>>> getRatio([np.nan, np.nan], funcArgs)
nan
>>> getRatio([np.nan, 1.0], funcArgs)
nan
>>> funcArgs['valueType'] ='subtract'
>>> getRatio([20, 10], funcArgs)
10
>>> funcArgs['scaleFactors'] = (1, 0.5)
>>> getRatio([10, 20], funcArgs)
0.0

The reciprocal ratio is of a and b is: is a/b if a/b > 1 else -1* b/a >>> funcArgs[’valueType’] =’reciprocal_ratio’
>>> funcArgs[’scaleFactors’] = (1, 1) >>> funcArgs[’pseudocount’] = 0 >>> getRatio([2, 1], funcArgs) 2.0 >>>
getRatio([1, 2], funcArgs) -2.0 >>> getRatio([1, 1], funcArgs) 1.0

88 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

deeptools.getScorePerBigWigBin module

class deeptools.getScorePerBigWigBin.Tester
Bases: object

deeptools.getScorePerBigWigBin.countFragmentsInRegions_worker(chrom, start, end,
bigWigFiles, step-
Size, binLength,
save_data,
bedRe-
gions=None)

returns the average score in each bigwig file at each ‘stepSize’ position within the interval start, end for a
‘binLength’ window. Because the idea is to get counts for window positions at different positions for sampling
the bins are equally spaced and not adjacent.

If a list of bedRegions is given, then the number of reads that overlaps with each region is counted.

Test dataset with two samples covering 200 bp. >>> test = Tester()

Fragment coverage. >>> np.transpose(countFragmentsInRegions_worker(test.chrom, 0, 200, [test.bwFile1,
test.bwFile2], 50, 25, False)[0]) array([[1., 1., 2., 2.],

[1., 1., 1., 3.]])

>>> np.transpose(countFragmentsInRegions_worker(test.chrom, 0, 200, [test.bwFile1, test.bwFile2], 200, 200, False)[0])
array([[1.5],

[1.5]])

BED regions: >>> bedRegions = [[test.chrom, [(45, 55)]], [test.chrom, [(95, 105)]], [test.chrom, [(145, 155)]]]
>>> np.transpose(countFragmentsInRegions_worker(test.chrom, 0, 200,[test.bwFile1, test.bwFile2], 200, 200,
False, ... bedRegions=bedRegions)[0]) array([[1. , 1.5, 2.],

[1. , 1. , 2.]])

deeptools.getScorePerBigWigBin.countReadsInRegions_wrapper(args)

deeptools.getScorePerBigWigBin.getChromSizes(bigwigFilesList)
Get chromosome sizes from bigWig file with pyBigWig

Test dataset with two samples covering 200 bp. >>> test = Tester()

Chromosome name(s) and size(s). >>> assert(getChromSizes([test.bwFile1, test.bwFile2]) == ([(‘3R’, 200)],
set([])))

deeptools.getScorePerBigWigBin.getScorePerBin(bigWigFiles, binLength, numberOfPro-
cessors=1, verbose=False, region=None,
bedFile=None, blackListFileName=None,
stepSize=None, chrsToSkip=[],
out_file_for_raw_data=None, al-
lArgs=None)

This function returns a matrix containing scores (median) for the coverage of fragments within a region. Each
row corresponds to a sampled region. Likewise, each column corresponds to a bigwig file.

Test dataset with two samples covering 200 bp. >>> test = Tester() >>>
np.transpose(getScorePerBin([test.bwFile1, test.bwFile2], 50, 3)) array([[1., 1., 2., 2.],

[1., 1., 1., 3.]])

1.10. deepTools API 89

deepTools Documentation, Release 2.4.1

deeptools.heatmapper module

deeptools.heatmapper.chopRegions(exonsInput, left=0, right=0)
exons is a list of (start, end) tuples. The goal is to chop these into separate lists of tuples, to take care or unscaled
regions. “left” and “right” denote regions of a given size to exclude from the normal binning process (unscaled
regions).

This outputs three lists of (start, end) tuples:

leftBins: 5’ unscaled regions bodyBins: body bins for scaling rightBins: 3’ unscaled regions

In addition are two integers padLeft: Number of bases of padding on the left (due to not being able to fulfill
“left”) padRight: As above, but on the right side

deeptools.heatmapper.chopRegionsFromMiddle(exonsInput, left=0, right=0)
Like chopRegions(), above, but returns two lists of tuples on each side of the center point of the exons.

The steps are as follow:

1.Find the center point of the set of exons (e.g., [(0, 200), (300, 400), (800, 900)] would be centered
at 200)

•If a given exon spans the center point then the exon is split

2.The given number of bases at the end of the left-of-center list are extracted

•If the set of exons don’t contain enough bases, then padLeft is incremented accordingly

3.As above but for the right-of-center list

4.A tuple of (#2, #3, pading on the left, and padding on the right) is returned

deeptools.heatmapper.compute_sub_matrix_wrapper(args)

class deeptools.heatmapper.heatmapper
Bases: object

Class to handle the reading and plotting of matrices.

static change_chrom_names(chrom)
Changes UCSC chromosome names to ensembl chromosome names and vice versa.

computeMatrix(score_file_list, regions_file, parameters, blackListFileName=None, verbose=False,
allArgs=None)

Splits into multiple cores the computation of the scores per bin for each region (defined by a hash ‘#’ in
the regions (BED/GFF) file.

static compute_sub_matrix_worker(chrom, start, end, score_file_list, parameters, regions)

Returns numpy matrix

A numpy matrix that contains per each row the values found per each of the regions
given

static coverage_from_array(valuesArray, zones, binSize, avgType)

static coverage_from_big_wig(bigwig, chrom, zones, binSize, avgType, nansAsZeros=False, ver-
bose=True)

uses pyBigWig to query a region define by chrom and zones. The output is an array that contains the
bigwig value per base pair. The summary over bins is done in a later step when coverage_from_array is
called. This method is more reliable than querying the bins directly from the bigwig, which should be
more efficient.

90 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

By default, any region, even if no chromosome match is found on the bigwig file, produces a result. In
other words no regions are skipped.

zones: array as follows zone0: region before the region start,

zone1: 5’ unscaled region (if present) zone2: the body of the region (not always present)
zone3: 3’ unscaled region (if present) zone4: the region from the end of the region down-
stream

each zone is a tuple containing start, end, and number of bins

This is useful if several matrices wants to be merged or if the sorted BED output of one computeMatrix
operation needs to be used for other cases

get_individual_matrices(matrix)
In case multiple matrices are saved one after the other this method splits them appart. Returns a list
containing the matrices

get_num_individual_matrix_cols()
returns the number of columns that each matrix should have. This is done because the final matrix that is
plotted can be composed of smaller matrices that are merged one after the other.

static matrix_avg(matrix, avgType=’mean’)

matrix_from_dict(matrixDict, regionsDict, parameters)

static my_average(valuesArray, avgType=’mean’)
computes the mean, median, etc but only for those values that are not Nan

read_matrix_file(matrix_file)

save_BED(file_handle)

save_matrix(file_name)
saves the data required to reconstruct the matrix the format is: A header containing the parameters used
to create the matrix encoded as: @key:value key2:value2 etc... The rest of the file has the same first 5
columns of a BED file: chromosome name, start, end, name, score and strand, all separated by tabs. After
the fifth column the matrix values are appended separated by tabs. Groups are separated by adding a line
starting with a hash (#) and followed by the group name.

The file is gzipped.

save_matrix_values(file_name)

save_tabulated_values(file_handle, reference_point_label=’TSS’, start_label=’TSS’,
end_label=’TES’, averagetype=’mean’)

Saves the values averaged by col using the avg_type given

Args: file_handle: file name to save the file reference_point_label: Name of the reference point label
start_label: Name of the star label end_label: Name of the end label averagetype: average type (e.g.
mean, median, std)

deeptools.heatmapper.trimZones(zones, maxLength, binSize, padRight)
Given a (variable length) list of lists of (start, end) tuples, trim/remove and tuple that extends past maxLength
(e.g., the end of a chromosome)

Returns the trimmed zones and padding

deeptools.heatmapper_utilities module

deeptools.heatmapper_utilities.getProfileTicks(hm, referencePointLabel, startLabel,
endLabel)

returns the position and labelling of the xticks that correspond to the heatmap

1.10. deepTools API 91

deepTools Documentation, Release 2.4.1

deeptools.heatmapper_utilities.plot_single(ax, ma, average_type, color, label,
plot_type=’simple’)

Adds a line to the plot in the given ax using the specified method

Parameters ax : matplotlib axis

matplotlib axis

ma : numpy array

numpy array The data on this matrix is summarized according to the average_type ar-
gument.

average_type : str

string values are sum mean median min max std

color : str

a valid color: either a html color name, hex (e.g #002233), RGB + alpha tuple or list or
RGB tuple or list

label : str

label

plot_type: str

type of plot. Either ‘se’ for standard error, ‘std’ for standard deviation, ‘over-
lapped_lines’ to plot each line of the matrix, fill to plot the area between the x axis
and the value or None, just to plot the average line.

Returns ax

matplotlib axis

Examples

>>> import matplotlib.pyplot as plt
>>> import os
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> matrix = np.array([[1,2,3],
... [4,5,6],
... [7,8,9]])
>>> ax = plot_single(ax, matrix -2, 'mean', color=[0.6, 0.8, 0.9], label='fill light blue', plot_type='fill')
>>> ax = plot_single(ax, matrix, 'mean', color='blue', label='red')
>>> ax = plot_single(ax, matrix + 5, 'mean', color='red', label='red', plot_type='std')
>>> ax = plot_single(ax, matrix + 10, 'mean', color='#cccccc', label='gray se', plot_type='se')
>>> ax = plot_single(ax, matrix + 20, 'mean', color=(0.9, 0.5, 0.9), label='violet', plot_type='std')
>>> ax = plot_single(ax, matrix + 30, 'mean', color=(0.9, 0.5, 0.9, 0.5), label='violet with alpha', plot_type='std')
>>> leg = ax.legend()
>>> plt.savefig("/tmp/test.pdf")
>>> plt.close()
>>> fig = plt.figure()
>>> os.remove("/tmp/test.pdf")

deeptools.mapReduce module

deeptools.mapReduce.blSubtract(t, chrom, chunk)
If a genomic region overlaps with a blacklisted region, then subtract that region out

92 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

returns a list of lists

deeptools.mapReduce.getUserRegion(chrom_sizes, region_string, max_chunk_size=1000000.0)
Verifies if a given region argument, given by the user is valid. The format of the region_string is
chrom:start:end:tileSize where start, end and tileSize are optional.

Parameters

• chrom_sizes – dictionary of chromosome/scaffold size. Key=chromosome name

• region_string – a string of the form chr:start:end

• max_chunk_size – upper limit for the chunk size

Returns tuple chrom_size for the region start, region end, chunk size

#>>> data = getUserRegion({‘chr2’: 1000}, “chr1:10:10”) #Traceback (most recent call last): # ... #NameError:
Unknown chromosome: chr1 #Known chromosomes are: [’chr2’]

If the region end is biger than the chromosome size, this value is used instead >>> getUserRegion({‘chr2’:
1000}, “chr2:10:1001”) ([(‘chr2’, 1000)], 10, 1000, 990)

Test chunk and regions size reduction to match tile size >>> getUserRegion({‘chr2’: 200000},
“chr2:10:123344:3”) ([(‘chr2’, 123344)], 9, 123345, 123336)

Test chromosome name mismatch >>> getUserRegion({‘2’: 200000}, “chr2:10:123344:3”) ([(‘2’, 123344)], 9,
123345, 123336) >>> getUserRegion({‘chrM’: 200000}, “MT:10:123344:3”) ([(‘chrM’, 123344)], 9, 123345,
123336)

deeptools.mapReduce.mapReduce(staticArgs, func, chromSize, genomeChunkLength=None, re-
gion=None, bedFile=None, blackListFileName=None, numberOf-
Processors=4, verbose=False, includeLabels=False, keepEx-
ons=False, transcriptID=’transcriptID’, exonID=’exonID’, tran-
script_id_designator=’transcript_id’, self_=None)

Split the genome into parts that are sent to workers using a defined number of procesors. Results are collected
and returned.

For each genomic region the given ‘func’ is called using the following parameters:

chrom, start, end, staticArgs

The arg are static, pickable variables that need to be sent to workers.

The genome chunk length corresponds to a fraction of the genome, in bp, that is send to each of the workers for
processing.

Depending on the type of process a larger or shorter regions may be preferred

Parameters

• chromSize – A list of duples containing the chromosome name and its length

• region – The format is chr:start:end:tileSize (see function getUserRegion)

• staticArgs – tuple of arguments that are sent to the given ‘func’

• func – function to call. The function is called using the following parameters (chrom, start,
end, staticArgs)

• bedFile – Is a bed file is given, the args to the func to be called are extended to include a
list of bed defined regions.

• blackListFileName – A list of regions to exclude from all computations. Note that
this has genomeChunkLength resolution...

• self – In case mapreduce should make a call to an object the self variable has to be passed.

1.10. deepTools API 93

deepTools Documentation, Release 2.4.1

• includeLabels – Pass group and transcript labels into the calling function. These are
added to the static args (groupLabel and transcriptName).

If “includeLabels” is true, a tuple of (results, labels) is returned

deeptools.utilities module

deeptools.utilities.bam_blacklisted_reads(bam_handle, chroms_to_ignore, blackListFile-
Name=None, numberOfProcessors=1)

deeptools.utilities.bam_blacklisted_worker(args)

deeptools.utilities.bam_total_reads(bam_handle, chroms_to_ignore)
Count the total number of mapped reads in a BAM file, filtering the chromosome given in chroms_to_ignore list

deeptools.utilities.copyFileInMemory(filePath, suffix=’‘)
copies a file into the special /dev/shm device which moves the file into memory. This process speeds ups the
multiprocessor access to such files

deeptools.utilities.getCommonChrNames(bamFileHandlers, verbose=True)
Compares the names and lengths of a list of bam file handlers. The input is list of pysam file handlers.

The function returns a duple containing the common chromosome names and the common chromome lengths.

Hopefully, only _random and chrM are not common.

deeptools.utilities.getGC_content(tb, chrom, fragStart, fragEnd, fraction=True)

deeptools.utilities.getTempFileName(suffix=’‘)
returns a temporary file name. If the special /dev/shm device is available, the temporary file would be located in
that folder. /dv/shm is a folder that resides in memory and which has much faster accession.

deeptools.utilities.gtfOptions(allArgs=None)
This is used a couple places to setup arguments to mapReduce

deeptools.utilities.mungeChromosome(chrom, chromList)
A generic chromosome munging function. “chrom” is munged by adding/removing “chr” such that it appears
in chromList

On error, None is returned, but a common chromosome list should be used beforehand to avoid this possibility

deeptools.utilities.tbitToBamChrName(tbitNames, bamNames)
checks if the chromosome names from the two-bit and bam file coincide. In case they do not coincide, a fix is
tried. If successful, then a mapping table is returned. tbitNames and bamNames should be lists

deeptools.utilities.toBytes(s)
Like toString, but for functions requiring bytes in python3

deeptools.utilities.toString(s)
This takes care of python2/3 differences

deeptools.utilities.which(program)
method to identify if a program is on the user PATH variable. From:
http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python

94 Chapter 1. Contents:

http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python

deepTools Documentation, Release 2.4.1

deeptools.writeBedGraph module

class deeptools.writeBedGraph.WriteBedGraph(bamFilesList, binLength=50, numberOf-
Samples=None, numberOfProcessors=1,
verbose=False, region=None, bed-
File=None, extendReads=False, blackList-
FileName=None, minMappingQuality=None,
ignoreDuplicates=False, chrsToSkip=[],
stepSize=None, center_read=False, sam-
Flag_include=None, samFlag_exclude=None,
zerosToNans=False, smoothLength=0, min-
FragmentLength=0, maxFragmentLength=0,
out_file_for_raw_data=None)

Bases: deeptools.countReadsPerBin.CountReadsPerBin

Reads bam files coverages and writes a bedgraph or bigwig file

Extends the CountReadsPerBin object such that the coverage of bam files is writen to multiple bedgraph files at
once.

The bedgraph files are later merge into one and converted into a bigwig file if necessary.

The constructor arguments are the same as for CountReadsPerBin. However, when calling the run method, the
following parameters have to be passed

Examples

Given the following distribution of reads that cover 200 on a chromosome named ‘3R’:

0 100 200
|--|

A ===============
===============

B =============== ===============
===============

===============

>>> import tempfile
>>> test_path = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"

>>> outFile = tempfile.NamedTemporaryFile()
>>> bam_file = test_path + "testA.bam"

For the example a simple scaling function is going to be used. This function takes the coverage found at each
region and multiplies it to the scaling factor. In this case the scaling factor is 1.5

>>> function_to_call = scaleCoverage
>>> funcArgs = {'scaleFactor': 1.5}

Restrict process to a region between positions 0 and 200 of chromosome 3R

>>> region = '3R:0:200'

Set up such that coverage is computed for consecutive bins of length 25 bp >>> bin_length = 25 >>> step_size
= 25

1.10. deepTools API 95

deepTools Documentation, Release 2.4.1

>>> num_sample_sites = 0 #overruled by step_size
>>> c = WriteBedGraph([bam_file], binLength=bin_length, region=region, stepSize=step_size)
>>> c.run(function_to_call, funcArgs, outFile.name)
>>> f = open(outFile.name, 'r')
>>> f.readlines()
['3R\t0\t100\t0\n', '3R\t100\t200\t1.5\n']
>>> f.close()
>>> outFile.close()

run(func_to_call, func_args, out_file_name, blackListFileName=None, format=’bedgraph’, smooth-
Length=0)
Given a list of bamfiles, a function and a function arguments, this method writes a bedgraph file (or bigwig)
file for a partition of the genome into tiles of given size and a value for each tile that corresponds to the
given function and that is related to the coverage underlying the tile.

Parameters func_to_call : str

function name to be called to convert the list of coverages computed for each bam file at
each position into a single value. An example is a function that takes the ratio between
the coverage of two bam files.

func_args : dict

dict of arguments to pass to func. E.g. {‘scaleFactor’:1.0}

out_file_name : str

name of the file to save the resulting data.

smoothLength : int

Distance in bp for smoothing the coverage per tile.

writeBedGraph_worker(chrom, start, end, func_to_call, func_args, bed_regions_list=None)
Writes a bedgraph based on the read coverage found on bamFiles

The given func is called to compute the desired bedgraph value using the funcArgs

Parameters chrom : str

Chrom name

start : int

start coordinate

end : int

end coordinate

func_to_call : str

function name to be called to convert the list of coverages computed for each bam file at
each position into a single value. An example is a function that takes the ratio between
the coverage of two bam files.

func_args : dict

dict of arguments to pass to func.

smoothLength : int

Distance in bp for smoothing the coverage per tile.

bed_regions_list: list

96 Chapter 1. Contents:

deepTools Documentation, Release 2.4.1

List of tuples of the form (chrom, start, end) corresponding to bed regions to be pro-
cessed. If not bed file was passed to the object constructor then this list is empty.

Returns temporary file with the bedgraph results for the region queried.

Examples

>>> test_path = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"
>>> bamFile1 = test_path + "testA.bam"
>>> bin_length = 50
>>> number_of_samples = 0 # overruled by step_size
>>> func_to_call = scaleCoverage
>>> funcArgs = {'scaleFactor': 1.0}

>>> c = WriteBedGraph([bamFile1], bin_length, number_of_samples, stepSize=50)
>>> tempFile = c.writeBedGraph_worker('3R', 0, 200, func_to_call, funcArgs)
>>> f = open(tempFile, 'r')
>>> f.readlines()
['3R\t0\t100\t0\n', '3R\t100\t200\t1\n']
>>> f.close()
>>> os.remove(tempFile)

deeptools.writeBedGraph.bedGraphToBigWig(chromSizes, bedGraphPath, bigWigPath,
sort=True)

takes a bedgraph file, orders it and converts it to a bigwig file using pyBigWig.

deeptools.writeBedGraph.getGenomeChunkLength(bamHandlers, tile_size)
Tries to estimate the length of the genome sent to the workers based on the density of reads per bam file and the
number of bam files.

The chunk length should be a multiple of the tileSize

deeptools.writeBedGraph.ratio(tile_coverage, args)
tileCoverage should be an list of two elements

deeptools.writeBedGraph.scaleCoverage(tile_coverage, args)
tileCoverage should be an list with only one element

deeptools.writeBedGraph.writeBedGraph_wrapper(args)
Passes the arguments to writeBedGraph_worker. This is a step required given the constrains from the multipro-
cessing module. The args var, contains as first element the ‘self’ value from the WriteBedGraph object

deeptools.writeBedGraph_bam_and_bw module

deeptools.writeBedGraph_bam_and_bw.getCoverageFromBigwig(bigwigHandle, chrom,
start, end, tileSize, miss-
ingDataAsZero=False)

deeptools.writeBedGraph_bam_and_bw.writeBedGraph(bamOrBwFileList, outputFileName,
fragmentLength, func, funcArgs,
tileSize=25, region=None, black-
ListFileName=None, numberOfPro-
cessors=None, format=’bedgraph’,
extendPairedEnds=True, miss-
ingDataAsZero=False, smooth-
Length=0, fixed_step=False, ver-
bose=False)

Given a list of bamfiles, a function and a function arguments, this method writes a bedgraph file (or bigwig)

1.10. deepTools API 97

deepTools Documentation, Release 2.4.1

file for a partition of the genome into tiles of given size and a value for each tile that corresponds to the given
function and that is related to the coverage underlying the tile.

deeptools.writeBedGraph_bam_and_bw.writeBedGraph_worker(chrom, start, end, tileSize,
defaultFragmentLength,
bamOrBwFileList,
func, funcArgs, ex-
tendPairedEnds=True,
smoothLength=0, miss-
ingDataAsZero=False,
fixed_step=False)

Writes a bedgraph having as base a number of bam files.

The given func is called to compute the desired bedgraph value using the funcArgs

tileSize

deeptools.writeBedGraph_bam_and_bw.writeBedGraph_wrapper(args)

Module contents

deepTools Galaxy. code @ github.

Complete information can be found in the following links: genindex and modindex

deepTools Galaxy. code @ github.

1.11 About

Please cite deepTools as follows:

Ramírez, Fidel, Devon P. Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas S. Richter,
Steffen Heyne, Friederike Dündar, and Thomas Manke. deepTools2: A next Generation Web Server for
Deep-Sequencing Data Analysis. Nucleic Acids Research (2016). doi:10.1093/nar/gkw257.

Where deepTools are used:

• DEEP consortium

• public Galaxy server hosted at https://usegalaxy.org/.

• public Galaxy instance hosted by the Max-Planck-Institute for Immunobiology and Epigenetics: deeptools.ie-
freiburg.mpg.de

• in-house Galaxy instance of the Max-Planck-Institute for Immunobiology and Epigenetics

• Galaxy instance of the University of Freiburg, Germany

• Galaxy instance of the ICGMB, Strasbourg, France

• Galaxy instance of LCSB and HPC @ Uni.lu, Belval, Luxembourg

This tool suite is developed by the Bioinformatics Facility at the Max Planck Institute for Immunobiology and Epige-
netics, Freiburg.

98 Chapter 1. Contents:

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
http://nar.oxfordjournals.org/content/early/2016/04/12/nar.gkw257.abstract
http://nar.oxfordjournals.org/content/early/2016/04/12/nar.gkw257.abstract
http://doi.org/10.1093/nar/gkw257
https://usegalaxy.org/
http://www1.ie-freiburg.mpg.de/bioinformaticsfac
http://www1.ie-freiburg.mpg.de/
http://www1.ie-freiburg.mpg.de/

deepTools Documentation, Release 2.4.1

deepTools Galaxy. code @ github.

While developing deepTools, we continuously strive to create software that fulfills the following criteria:

• efficiently extract reads from BAM files and perform various computations on them

• turn BAM files of aligned reads into bigWig files using different normalization strategies

• make use of multiple processors (speed!)

• generation of highly customizable images (change colours, size, labels, file format, etc.)

• enable customized down-stream analyses, meaning that every data set created can be stored by the user

• modular approach - compatibility, flexibility, scalability (i.e. we can add more and more modules and make
use of established methods)

Tip: For support, questions, or feature requests contact: deeptools@googlegroups.com

Please cite deepTools2 as follows:

Ramírez, Fidel, Devon P. Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas S. Richter, Steffen Heyne,
Friederike Dündar, and Thomas Manke. “deepTools2: a next generation web server for deep-sequencing data
analysis.” Nucleic Acids Research (2016): gkw257.

This tool suite is developed by the Bioinformatics Facility at the Max Planck Institute for Immunobiology and Epige-
netics, Freiburg.

deepTools Galaxy. code @ github.

1.11. About 99

http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
mailto:deeptools@googlegroups.com
http://www1.ie-freiburg.mpg.de/bioinformaticsfac
http://www1.ie-freiburg.mpg.de/
http://www1.ie-freiburg.mpg.de/
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/

deepTools Documentation, Release 2.4.1

100 Chapter 1. Contents:

Python Module Index

d
deeptools, 98
deeptools.bamHandler, 79
deeptools.correctReadCounts, 79
deeptools.correlation, 79
deeptools.correlation_heatmap, 81
deeptools.countReadsPerBin, 81
deeptools.getFragmentAndReadSize, 87
deeptools.getRatio, 88
deeptools.getScorePerBigWigBin, 89
deeptools.heatmapper, 90
deeptools.heatmapper_utilities, 91
deeptools.mapReduce, 92
deeptools.SES_scaleFactor, 78
deeptools.utilities, 94
deeptools.writeBedGraph, 95
deeptools.writeBedGraph_bam_and_bw, 97

101

deepTools Documentation, Release 2.4.1

102 Python Module Index

Index

B
bam_blacklisted_reads() (in module deeptools.utilities),

94
bam_blacklisted_worker() (in module deeptools.utilities),

94
bam_total_reads() (in module deeptools.utilities), 94
bedGraphToBigWig() (in module deep-

tools.writeBedGraph), 97
blSubtract() (in module deeptools.mapReduce), 92

C
change_chrom_names() (deep-

tools.heatmapper.heatmapper static method),
90

chopRegions() (in module deeptools.heatmapper), 90
chopRegionsFromMiddle() (in module deep-

tools.heatmapper), 90
compute_correlation() (deeptools.correlation.Correlation

method), 79
compute_ratio() (in module deeptools.getRatio), 88
compute_sub_matrix_worker() (deep-

tools.heatmapper.heatmapper static method),
90

compute_sub_matrix_wrapper() (in module deep-
tools.heatmapper), 90

computeCorrectedReadcounts() (in module deep-
tools.correctReadCounts), 79

computeLambda() (in module deep-
tools.correctReadCounts), 79

computeMatrix() (deeptools.heatmapper.heatmapper
method), 90

computePvalue() (in module deep-
tools.correctReadCounts), 79

controlLambda() (in module deep-
tools.correctReadCounts), 79

copyFileInMemory() (in module deeptools.utilities), 94
correctReadCounts() (in module deep-

tools.correctReadCounts), 79
Correlation (class in deeptools.correlation), 79

count_reads_in_region() (deep-
tools.countReadsPerBin.CountReadsPerBin
method), 83

countFragmentsInRegions_worker() (in module deep-
tools.getScorePerBigWigBin), 89

countReadsInRegions_wrapper() (in module deep-
tools.countReadsPerBin), 87

countReadsInRegions_wrapper() (in module deep-
tools.getScorePerBigWigBin), 89

CountReadsPerBin (class in deep-
tools.countReadsPerBin), 81

coverage_from_array() (deep-
tools.heatmapper.heatmapper static method),
90

coverage_from_big_wig() (deep-
tools.heatmapper.heatmapper static method),
90

D
deeptools (module), 98
deeptools.bamHandler (module), 79
deeptools.correctReadCounts (module), 79
deeptools.correlation (module), 79
deeptools.correlation_heatmap (module), 81
deeptools.countReadsPerBin (module), 81
deeptools.getFragmentAndReadSize (module), 87
deeptools.getRatio (module), 88
deeptools.getScorePerBigWigBin (module), 89
deeptools.heatmapper (module), 90
deeptools.heatmapper_utilities (module), 91
deeptools.mapReduce (module), 92
deeptools.SES_scaleFactor (module), 78
deeptools.utilities (module), 94
deeptools.writeBedGraph (module), 95
deeptools.writeBedGraph_bam_and_bw (module), 97

E
estimateScaleFactor() (in module deep-

tools.SES_scaleFactor), 78

103

deepTools Documentation, Release 2.4.1

G
get_coverage_of_region() (deep-

tools.countReadsPerBin.CountReadsPerBin
method), 84

get_fragment_from_read() (deep-
tools.countReadsPerBin.CountReadsPerBin
method), 85

get_individual_matrices() (deep-
tools.heatmapper.heatmapper method), 91

get_num_individual_matrix_cols() (deep-
tools.heatmapper.heatmapper method), 91

get_outlier_indices() (deeptools.correlation.Correlation
static method), 80

get_read_and_fragment_length() (in module deep-
tools.getFragmentAndReadSize), 88

getChromSizes() (in module deep-
tools.getScorePerBigWigBin), 89

getCommonChrNames() (in module deeptools.utilities),
94

getCoverageFromBigwig() (in module deep-
tools.writeBedGraph_bam_and_bw), 97

getFragmentLength_worker() (in module deep-
tools.getFragmentAndReadSize), 87

getFragmentLength_wrapper() (in module deep-
tools.getFragmentAndReadSize), 88

getGC_content() (in module deeptools.utilities), 94
getGenomeChunkLength() (in module deep-

tools.writeBedGraph), 97
getProfileTicks() (in module deep-

tools.heatmapper_utilities), 91
getRatio() (in module deeptools.getRatio), 88
getRead() (deeptools.countReadsPerBin.Tester method),

87
getReadLength() (deep-

tools.countReadsPerBin.CountReadsPerBin
method), 84

getScorePerBin() (in module deep-
tools.getScorePerBigWigBin), 89

getSmoothRange() (deep-
tools.countReadsPerBin.CountReadsPerBin
method), 84

getTempFileName() (in module deeptools.utilities), 94
getUserRegion() (in module deeptools.mapReduce), 93
gtfOptions() (in module deeptools.utilities), 94

H
heatmapper (class in deeptools.heatmapper), 90

I
is_proper_pair() (deep-

tools.countReadsPerBin.CountReadsPerBin
static method), 86

L
load_matrix() (deeptools.correlation.Correlation

method), 80

M
mapReduce() (in module deeptools.mapReduce), 93
matrix_avg() (deeptools.heatmapper.heatmapper static

method), 91
matrix_from_dict() (deeptools.heatmapper.heatmapper

method), 91
mungeChromosome() (in module deeptools.utilities), 94
my_average() (deeptools.heatmapper.heatmapper static

method), 91

O
openBam() (in module deeptools.bamHandler), 79

P
plot_correlation() (deeptools.correlation.Correlation

method), 80
plot_correlation() (in module deep-

tools.correlation_heatmap), 81
plot_pca() (deeptools.correlation.Correlation method), 80
plot_scatter() (deeptools.correlation.Correlation method),

80
plot_single() (in module deeptools.heatmapper_utilities),

92

R
ratio() (in module deeptools.writeBedGraph), 97
read_matrix_file() (deeptools.heatmapper.heatmapper

method), 91
remove_outliers() (deeptools.correlation.Correlation

method), 80
remove_row_of_zeros() (in module deep-

tools.countReadsPerBin), 87
remove_rows_of_zeros() (deep-

tools.correlation.Correlation method), 80
run() (deeptools.countReadsPerBin.CountReadsPerBin

method), 87
run() (deeptools.writeBedGraph.WriteBedGraph

method), 96

S
save_BED() (deeptools.heatmapper.heatmapper method),

91
save_corr_matrix() (deeptools.correlation.Correlation

method), 80
save_matrix() (deeptools.heatmapper.heatmapper

method), 91
save_matrix_values() (deeptools.heatmapper.heatmapper

method), 91

104 Index

deepTools Documentation, Release 2.4.1

save_tabulated_values() (deep-
tools.heatmapper.heatmapper method), 91

scaleCoverage() (in module deeptools.writeBedGraph),
97

T
tbitToBamChrName() (in module deeptools.utilities), 94
Tester (class in deeptools.countReadsPerBin), 87
Tester (class in deeptools.getScorePerBigWigBin), 89
Tester (class in deeptools.SES_scaleFactor), 78
toBytes() (in module deeptools.utilities), 94
toString() (in module deeptools.utilities), 94
trimZones() (in module deeptools.heatmapper), 91

W
which() (in module deeptools.utilities), 94
WriteBedGraph (class in deeptools.writeBedGraph), 95
writeBedGraph() (in module deep-

tools.writeBedGraph_bam_and_bw), 97
writeBedGraph_worker() (deep-

tools.writeBedGraph.WriteBedGraph method),
96

writeBedGraph_worker() (in module deep-
tools.writeBedGraph_bam_and_bw), 98

writeBedGraph_wrapper() (in module deep-
tools.writeBedGraph), 97

writeBedGraph_wrapper() (in module deep-
tools.writeBedGraph_bam_and_bw), 98

Index 105

	Contents:
	Python Module Index

